Skip to main content
Log in

Ultrastructural localization of xanthine oxidase activity in the digestive tract of the rat

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Precise localization of xanthine oxidase activity might elucidate physiological functions of the enzyme, which have not been established so far. Because xanthine oxidase is sensitive to chemical (aldehyde) fixation, we have localized its activity in unfixed cryostat sections of rat duodenum, oesophagus and tongue mounted on a semipermeable membrane. Previous studies had shown that this procedure enables the exact localization of activities of peroxisomal oxidases with maintenance of acceptable ultrastructure. Moreover, leakage and/or diffusion of enzyme molecules was prevented with this method. The incubation medium to detect xanthine oxidase activity contained hypoxanthine as substrate and cerium ions as capturing agent for hydrogen peroxide. After incubation, reaction product in the sections was either visualized for light microscopy or sections were fixed immediately and processed for electron microscopy. At the ultrastructural level, crystalline reaction product specifically formed by xanthine oxidase activity was found to be present in the cytoplasmic matrix of enterocytes and goblet cells and in mucus of duodenum. Moderate activity was found in the cytoplasm of apical cell layers of epithelia of oesophagus and tongue, with highest activity in the cornified layer. Moreover, large amounts of reaction product were found to surround bacteria present between cell remnants of the cornified layer of the oesophagus. Many bacteria surrounded by the enzyme showed signs of destruction and/or cell death. The intracellular localization of xanthine oxidase activity in the cytoplasm of epithelial cells as well as the extracellular localization suggest that the enzyme plays a role in the lumen of the digestive tract, for instance in the defence against microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaya, Y., Yamazaki, K-I., Sato, M., Noda, K., Nishino, T. & Nishino, T. (1990) Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J. Biol. Chem. 265, 14170–5.

    Google Scholar 

  • Angermüller, S. (1989) Peroxisomal oxidases: cytochemical localization and biological relevance. Progr. Histochem. Cytochem. 20, 1–63.

    Google Scholar 

  • Angermüller, S. & Fahimi, H. D. (1988) Light microscopic visualization of the reaction product of cerium used for localization of peroxisomal oxidases. J. Histochem. Cytochem. 36, 23–8.

    Google Scholar 

  • Angermüller, S., Bruder, G., Völkl, A., Wesch, H. & Fahimi, H. D. (1987) Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study. Eur. J. Cell Biol. 45, 137–44.

    Google Scholar 

  • Arborgh, B., Ericsson, J. L. E. & Helminen, H. (1971) Inhibition of renal acid phosphatase and aryl sulfatase activity by glutaraldehyde fixation. J. Histochem. Cytochem. 19, 449–51.

    Google Scholar 

  • Becker, B. F. (1993) Towards a physiological function of uric acid. Free Rad. Biol. Med. 14, 615–31.

    Google Scholar 

  • Becker, B. F., Reinholz, N., Özçelik, T., Leipert, B. & Gerlach, E. (1989) Uric acid as radical scavenger and antioxidant in the heart. Pflügers Arch. 415, 127–35.

    Google Scholar 

  • Björk, L. & Cleasson, O. (1979) Xanthine oxidase as a source of hydrogen peroxide for the lactoperoxidase system in milk. J. Diary Sci. 62, 1211–5.

    Google Scholar 

  • Briggs, R. T., Drath, D. B., Karnovsky, M. L. & Karnovsky, M. J. (1975) Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J. Cell Biol. 67, 566–86.

    Google Scholar 

  • Chalmers, G. R. & Edgerton, V. R. (1989) Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons. J. Histochem. Cytochem. 37, 899–901.

    Google Scholar 

  • Dikov, A., Alexandrov, I., Russinova, A. & Boya-Djieva-Michailova, A. (1988) Ultracytochemical detection of enzymes by reduction of potassium ferricyanide. I. A method for detection of xanthine oxidase. Acta Histochem. 83, 107–15.

    Google Scholar 

  • Engerson, T. D., Mckelvey, T. G., Rhyne, D. B., Boggio, E. B., Snyder, S. J. & Jones, H. P. (1987) Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J. Clin. Invest. 79, 1564–70.

    Google Scholar 

  • Frederiks, W. M. & Marx, F. (1993) A histochemical procedure for light microscopic demonstration of xanthine oxidase activity in unfixed cryostat sections using cerium ions and a semipermeable membrane technique. J. Histochem. Cytochem. 41, 667–70.

    Google Scholar 

  • Frederiks, W. M., Kooij, A. & Marx, F. (1993) The effect of ischemia on xanthine oxidase activity in rat intestine and liver. Int. J. Exp. Pathol. 74, 21–6.

    Google Scholar 

  • Frederiks, W. M., Bosch, K. S., van DenMunckhof, R. J. M. & vanNoorden, C. J. F. (1994) A quantitative histochemical study on xanthine oxidase activity in rat liver using the cerium capture method in the presence of polyvinyl alcohol. J. Histochem. Cytochem. 42, 1091–7.

    Google Scholar 

  • Gossrau, R., vanNoorden, C. J. F. & Frederiks, W. M. (1989) Enhanced light microscopic visualization of oxidase activity with the cerium capture method. Histochemistry 92, 349–53.

    Google Scholar 

  • Gossrau, R., Frederiks, W. M. & vanNoorden, C. J. F. (1990) Histochemistry of reactive oxygenspecies (ROS)-generating oxidases in cutaneous and mucous epithelia of laboratory rodents with special reference to xanthine oxidase. Histochemistry 94, 539–44.

    Google Scholar 

  • Granger, D. N., Höllwarth, M. E. & Parks, D. A. (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol. Scand. 126 (Suppl. 548), 47–63.

    Google Scholar 

  • Granger, D. N., Rutili, G. & Mccord, J. M. (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81, 22–9.

    Google Scholar 

  • Hopwood, D. (1991) Fixation of tissue for histochemistry. In Histochemical and Immunocytochemical Techniques. Applications to Pharmacology and Toxicology (edited by Bach, P. H. & Baker, J. R. J.), pp. 147–65. London: Chapman & Hall.

    Google Scholar 

  • Ichikawa, M., Nishino, T., Nishino, T. & Ichikawa, A. (1992) Subcellular localization of xanthine oxidase in rat hepatocytes: high resolution immunoelectron microscopic study combined with biochemical analysis. J. Histochem. Cytochem. 40, 1097–1103.

    Google Scholar 

  • Jarasch, E.-D., Grund, C., Bruder, G., Heid, H. W., Keenan, T. W. & Franke, W. W. (1981) Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell 25, 67–82.

    Google Scholar 

  • kooij, A. (1994) A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. Histochem. J. 26, 889–915.

    Google Scholar 

  • Kooij, A., Schiller, H. J., Schijns, M., vanNoorden, C. J. F. & Frederiks, W. M. (1994) Conversion of xanthine dehydrogenase into xanthine oxidase in rat liver and plasma at the onset of reper-fusion after ischemia. Hepatology 19, 1488–95.

    Google Scholar 

  • Kooij, A., Bosch, K. S., Frederiks, W. M. & vanNoorden, C. J. F. (1992) High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective tissue cells. Virchows Archiv. B. Cell. Pathol. 62, 143–50.

    Google Scholar 

  • Kooij, A., Frederiks, W. M., Gossrau, R. & vanNoorden, C. J. F. (1991) Localization of xanthine oxidoreductase activity using the tissue protectant polyvinyl alcohol and final electron acceptor tetranitro BT. J. Histochem. Cytochem. 39, 87–93.

    Google Scholar 

  • Massey, V., Komai, H., Palmer, G. & Elion, G. B. (1970) On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo [3,4-d] pyrimidines. J. Biol Chem. 245, 2837–44.

    Google Scholar 

  • Mcmillan, P. J. (1967) Differential demonstration of muscle and heart type lactic dehydrogenase of rat muscle and kidney. J. Histochem. Cytochem. 15, 21–31.

    Google Scholar 

  • Meijer, A. E. F. H. (1972) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. Histochemie 30, 31–9.

    Google Scholar 

  • Meijer, A. E. F. H. (1980) Semipermeable membrane techniques in quantitative enzyme histochemistry. In Trends in Enzyme Histochemistry and Cytochemistry. Ciba Foundation Symposium 73, pp. 103–20. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Patel, H. R. H., Frederiks, W. M., Marx, F., Best, A. J. & vanNoorden, C. J. F. (1991) A quantitative histochemical study of d-amino acid oxidase activity in rat liver in relationship with feeding conditions. J. Histochem. Cytochem. 39, 81–6.

    Google Scholar 

  • Peden, D. B., Hohman, R., Brown, M. E., Mason, R. T., Berkebile, C., Fales, H. M. & Kaliner, M. A. (1990) Uric acid is a major antioxidant in human nasal airway secretions. Proc. Natl Acad. Sci. USA 87, 7638–42.

    Google Scholar 

  • Richardson, K. C., Jarrett, L. & Finke, E. H. (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–23.

    Google Scholar 

  • Sackler, M. L. (1966) Xanthine oxidase from liver and duodenum of the rat: histochemical localization and electrophoretic heterogeneity. J. Histochem. Cytochem. 14, 326–33.

    Google Scholar 

  • Schellens, J. P. M., Frederiks, W. M., vanNoorden, C. J. F., Vreeling Sindelárová, H., Marx, F. & Mcmillan, P. J. (1992) The use of unfixed cryostat sections for electron microscopic study of d-amino acid oxidase activity in rat liver. J. Histochem. Cytochem. 40, 1975–9.

    Google Scholar 

  • Terao, J. & Nagao, A. (1991) Antioxidative effect of human saliva on lipid peroxidation. Agric. Biol. Chem. 55, 869–72.

    Google Scholar 

  • Tubaro, E., Lotti, B., Cavallo, G., Croce, C. & Borelli, G. (1980a) Liver xanthine oxidase increase in mice in three pathological models. A possible defence mechanism. Biochem. Pharmacol. 29, 1939–43.

    Google Scholar 

  • Tubaro, E., Lotti, B., Santiangeli, C. & Cavallo, G. (1980b) Xanthine oxidase increase in polymorphonuclear leukocytes and macrophages in mice in three pathological situations. Biochem. Pharmacol. 29, 1945–8.

    Google Scholar 

  • van DenMunckhof, R. J. M., Vreeling-sindelárová, H., Schellens, J. P. M. & Frederiks, W. M. (1994) Localization of uric acid oxidase activity in core and matrix of peroxisomes as detected in unfixed cryostat sections of rat liver. J. Histochem. Cytochem. 42, 177–83.

    Google Scholar 

  • vanNoorden, C. J. F. & Frederiks, W. M. (1992) Enzyme Histochemistry: a Laboratory Manual of Current Methods. Oxford: Oxford University Press.

    Google Scholar 

  • vanNoorden, C. J. F. & Frederiks, W. M. (1993) Cerium methods for light and electron microscopical histochemistry. J. Microsc. 171, 3–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Den Munckhof, R.J.M., Vreeling-Sindelárová, H., Schellens, J.P.M. et al. Ultrastructural localization of xanthine oxidase activity in the digestive tract of the rat. Histochem J 27, 897–905 (1995). https://doi.org/10.1007/BF00173844

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173844

Keywords

Navigation