Skip to main content
Log in

Anatomy of the cochlear nuclear complex of guinea pig

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The cyto-and fibre-architecture of the cochlear nuclear complex of the guinea-pig has been studied in serial sections using Nissl, Golgi and combined cellmyelin staining of normal material, and a silver degeneration method after cochlear ablation. The nuclear subdivisions and major cell types can be recognised on the basis of those found in the cat, but there are some differences between the two species in the precise distribution and morphology of the neurons. The rostrodorsal part of the anteroventral cochlear nucleus (AVCN) contains predominantly spherical bushy cells, but these cannot be readily divided into large and small types as in the cat. Globular bushy cells are seen in the caudal region of the AVCN, but the majority occur in the posteroventral cochlear nucleus (PVCN), in an area extending from the nerve root right up to the boundary of the dorsal cochlear nucleus (DCN). The octopus cells constitute a distinct region in the most dorsomedial part of the PVCN underneath the DCN. Giant cells are seen scattered around the nerve root region. Multipolar and small cells are seen throughout the non-granular regions of the ventral cochlear nucleus (VCN) except for the octopus cell area, but occur mainly in the more rostral regions of the PVCN. Small cells occur in greatest abundance in the thin cap area at the dorsal edge of the VCN below a superficial granule cell layer. The latter covers the dorsolateral surface of the VCN, and a lamina of granule cells partially separates the PVCN from the DCN. The DCN can be divided into four layers. The outermost molecular layer (layer 1) is separated from the deeper regions by a prominent layer of granule cells (layer 2) which also contains the pyramidal cells. Molecular layer stellate cells are seen in layer 1 and a staggered row of cartwheel neurons is found at the boundary between layers 1 and 2. Layer 3 contains the basal dendrites of the pyramidal cells and some small (vertical) cells, and is innervated by the descending branches of the cochlear nerve. The deepest layer 4, which contains multipolar cells and giant cells, does not appear to receive this direct cochlear input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ab :

ascending branches of cochlear nerve fibres

AVCN :

anteroventral cochlear nucleus

BIC :

brachium of the inferior colliculus

BP :

brachium pontis

C :

caudal

cap :

cap area

Cb :

cerebellum

Cbgr :

cerebellar granule cells

CNC :

cochlear nuclear complex

Co :

cochlea

CoN :

cochlear nerve

Cp :

cerebellar peduncles

Cx :

cerebral cortex

D :

dorsal (for direction), also dorsal acoustic stria

db :

descending branches of cochlear nerve fibres

DCN :

dorsal cochlear nucleus

DFT :

descending fibre tract of Lorente de Nó

DL :

dorsolateral

ep :

ependyma

Fl :

flocculus

g :

globular cell

gca :

globular cell area

gr :

granule cell

I :

intermediate acoustic stria

IC :

inferior colliculus

L :

lateral

lam :

granule cell lamina

LL :

lateral lemniscus

LSO :

lateral nucleus of the superior olivary complex

M :

medial

m :

multipolar cell

MGB :

medial geniculate body

N5 :

trigeminal nerve

nr :

cochlear nerve root

oca :

octopus cell area

P :

pons

PVCN :

posteroventral cochlear nucleus

py :

pyramidal cell

R :

rostral

RB :

restiform body

s :

spherical cell

SC :

superior colliculus

sca :

spherical cell area

sgrl :

superficial granule cell layer

TB :

trapezoid body

tc :

taenia choroidea

V :

ventral

VCN :

ventral cochlear nucleus

VeN :

vestibular nerve

VM :

ventromedial

VTT :

ventrotubercular tract

IV :

fourth ventricle

1–4 :

layers of DCN

References

  • Adams JC (1979a) A fast reliable silver-chromate Golgi method for perfusion-fixed tissue. Stain Technol 54:225–226

    Google Scholar 

  • Adams JC (1979b) Ascending projections to the inferior colliculus. J Comp Neurol 183:519–538

    Google Scholar 

  • Adams JC (1983) Multipolar cells in the ventral cochlear nucleus project to both the dorsal cochlear nucleus and to the inferior colliculus. Neurosci Lett 37:205–208

    Google Scholar 

  • Adams JC (1986) Neuronal morphology in the human cochlear nucleus. Arch Otolaryngol 112:1253–1261

    Google Scholar 

  • Adams JC, Warr WB (1976) Origins of axons in the cat's acoustic striae determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 170:107–122

    Google Scholar 

  • Bascik RD, Strominger NL (1973) The cytoarchitecture of the human anteroventral cochlear nucleus. J Comp Neurol 147:281–290

    Google Scholar 

  • Berrebi AS, Mugnaini E (1988) Effects of the murine mutation ‘nervous’ on neurons in cerebellum and dorsal cochlear nucleus. J Neurocytol 17:465–484

    Google Scholar 

  • Blackstad TW, Osen KK, Mugnaini E (1984) Pyramidal neurons of the dorsal cochlear nucleus: a Golgi and computer reconstruction study in the cat. Neurosci 13:827–854

    Google Scholar 

  • Brawer RJ, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–300

    Google Scholar 

  • Brawer RJ, Morest DK (1975) Relation between auditory nerve endings and cell types in the cat's anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160:491–506

    Google Scholar 

  • Brown MC, Berglund AM, Kiang NYS, Ryugo DK (1988) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278:581–590

    Google Scholar 

  • Browner RJ, Baruch A (1982) The. cytoarchitecture of the dorsal cochlear nucleus in the 3 month and 26 month old C57BL/6 mouse: a Golgi impregnation study. J Comp Neurol 211:115–138

    Google Scholar 

  • Cajal SRy (1909) Histologie du système nerveux de Phomme et des vertébrés. A. Maloine, Paris

    Google Scholar 

  • Cant NB (1981) The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neurosci 6:2643–2655

    Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476

    Google Scholar 

  • Cant NB, Gaston KC (1982) Pathways connecting the right and left cochlear nuclei. J Comp Neurol 212:313–326

    Google Scholar 

  • Cant NB, Morest DK (1979) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4:1925–1945

    Google Scholar 

  • Cant NB, Morest DK (1985) The structural basis for stimulus coding in the cochlear nucleus of cat. In: Berlin CI (ed) Hearing science: Recent advances. Taylor and Francis, London, pp 371–421

    Google Scholar 

  • Disterhoft JF, Perkins RE, Evans S (1980) Neuronal morphology of the rabbit cochlear nucleus. J Comp Neurol 192:687–702

    Google Scholar 

  • Evans EF (1979) Neuroleptanaesthesia for the guinea pig. Arch Otolaryngol 105:185–186

    Google Scholar 

  • Evans EF, Nelson PG (1973) On the functional relationship between the dorsal and ventral divisions of the cochlear nucleus of the cat. Exp Brain Res 27:428–442

    Google Scholar 

  • Fernandez C, Karapas F (1967) The course and termination of the striae of Monakow and Held in the cat. J Comp Neurol 131:371–386

    Google Scholar 

  • Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73:263–284

    Google Scholar 

  • Fuse G (1920) Beitrag zur mikroskopischen Anatomie der primaren Endigungstätten des N. Octavus, des Ganglion ventrale acustici und des Tuberculum acusticum bei Stachelschwein. Arb Anat Inst Sendai V:50–70

    Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975a) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268

    Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975b) Single unit activity in the dorsal cochlear nucleus of the cat. J Comp Neurol 162:269–284

    Google Scholar 

  • Hackney CM (1987) The distribution and morphology of cells in the ventral cochlear nucleus of guinea pig in Nissl and Golgi material. Br J Audiol 22:137–138

    Google Scholar 

  • Hackney CM (1988) Observations on the cytoarchitecture of the guinea pig ventral cochlear nucleus. In: Syka J, Masterton RB (eds) Auditory pathway — structure and function. Plenum Press, London and New York, pp 77–82

    Google Scholar 

  • Hackney CM, Pick GF (1986) The distribution of spherical cells in the anteroventral cochlear nucleus of the guinea pig — some light microscopic observations. Br J Audiol 20:215–220

    Google Scholar 

  • Harrison J, Hackney CM (1986) Comparative study of the granule cell systems of the cochlear nuclei and cerebellum of the guinea pig. Br J Audiol 21:305

    Google Scholar 

  • Harrison J, Hackney CM (1989) A comparison of the immunocytochemical distribution of GABA with the distribution and morphology of characterised cell types in the cochlear nuclei of the guinea pig. Br J Audiol 23:160

    Google Scholar 

  • Harrison JM, Irving R (1965) The anterior ventral cochlear nucleus. J Comp Neurol 126:51–64

    Google Scholar 

  • Harrison JM, Irving R (1966a) Ascending connections of the anterior ventral cochlear nucleus in the rat. J Comp Neurol 124:15–42

    Google Scholar 

  • Harrison JM, Irving R (1966b) The organization of the posterior ventral cochlear nucleus in the rat. J Comp Neurol 126:391–402

    Google Scholar 

  • Heimann-Patterson TD, Strominger NL (1985) Morphological changes in the cochlear nuclear complex in primate phylogeny and development. J Morphol 186:289–306

    Google Scholar 

  • Irving R, Harrison JM (1967) The superior olivary complex and audition: A comparative study. J Comp Neurol 130:77–86

    Google Scholar 

  • Kane ES (1974) Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study. J Comp Neurol 155:301–330

    Google Scholar 

  • Lorente de Nó R (1933) Anatomy of the eighth nerve: III General plan of structure of the primary cochlear nuclei. Laryngoscope 43:327–350

    Google Scholar 

  • Lorente de Nó R (1976) Some unresolved problems concerning the cochlear nerve. Ann Otol Rhinol Laryngol 85 [Suppl 34]:1–28

    Google Scholar 

  • Lorente de Nó R (1981) The primary acoustic nuclei. Raven Press, New York

    Google Scholar 

  • Merzenich MM, Kitzes L, Aitkin L (1973) Anatomical and physiological evidence for auditory specialization in the mountain beaver (Aplondontia rufa). Brain Res 58:331–344

    Google Scholar 

  • Moore JK (1980) The primate cochlear nuclei: Loss of lamination as a phylogenetic process. J Comp Neurol 193:609–629

    Google Scholar 

  • Moore JK (1986) Cochlear nuclei: Relationship to the auditory nerve. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. Raven Press, New York, pp 283–301

    Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    Google Scholar 

  • Mugnaini E (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J Comp Neurol 235:61–81

    Google Scholar 

  • Mugnaini E, Morgan JI (1987) The neuropeptide cerebellin is a marker for two similar neuronal circuits in the rat brain. Proc Natl Acad Sci USA 84:8692–8696

    Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980a) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat and mouse. J Comp Neurol 191:581–606

    Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL, Korte G (1980b) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of the cat, rat and mouse. J Neurocytol 9:537–570

    Google Scholar 

  • Mugnaini E, Berrebi AS, Dahl A-L, Morgan JI (1987) The polypeptide PEP-19 is a marker for Purkinje cells in the cerebellar cortex and cartwheel cells in the dorsal cochlear nucleus. Arch Ital Biol 126:41–67

    Google Scholar 

  • Noda Y, Pirsig W (1974) Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Arch Otorhinolaryngol 208:107–120

    Google Scholar 

  • Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat. A light and electron microscopic study. J Comp Neurol 224:155–172

    Google Scholar 

  • Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: Possible substrates for binaural interaction. J Comp Neurol 264:24–46

    Google Scholar 

  • Oliver DL, Potashner SJ, Jones DT, Morest DK (1983) Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig. J Neurosci 3:455–472

    Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei of the cat. J Comp Neurol 136:453–484

    CAS  PubMed  Google Scholar 

  • Osen KK (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J Comp Neurol 144:355–372

    Google Scholar 

  • Osen KK (1988) Anatomy of the mammalian cochlear nuclei: A review. In: Syka J, Masterton RB (eds) Auditory pathway-structure and function. Plenum Press, London, New York, pp 65–76

    Google Scholar 

  • Osen KK, Jansen J (1965) The cochlear nuclei of the common porpoise, Phocaena phocaena. J Comp Neurol 125:233–257

    Google Scholar 

  • Osen KK, Ottersen OP, Storm-Mathisen J (1990) Colocalisation of glycine-like and GABA-like immunoreactivities. A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: Ottersen OP, Storm-Mathisen J (eds) Glycine Neurotransmission. J. Wiley and Sons, Chichester (In press)

    Google Scholar 

  • Parker DJ, Evans EF, Hackney CM (1988) Cellular connections revealed by transneuronal transport of HRP in the guinea pig cochlear nucleus. In: Syka J, Masterton RB (eds) Auditory pathway — structure and function. Plenum Press, London, New York, pp 83–88

    Google Scholar 

  • Perry DR, Webster WR (1981) Neuronal organization of the rabbit cochlear nucleus: Some anatomical and electrophysiological observations. J Comp Neurol 197:623–638

    Google Scholar 

  • Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1:220–235

    Google Scholar 

  • Pirsig W (1968) Regionen, Zelltypen und Synapsen im ventralen Nucleus Cochlearis des Meerschweinchens. Arch Klin Exp Ohr-Nase-Kehlkopfheilk 192:333–350

    Google Scholar 

  • Poljak S (1927) Über den allgemeinen Bauplan des Gehörsystems und über seine Bedeutung für die Physiologie, für die Klinik und für die Psychologie. Z Gesamte Neurol Psychiatrie 110:1–49

    Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983a) Physiological properties of cells labeled with horseradish peroxidase in the cat ventral cochlear nucleus. J Comp Neurol 213:448–463

    Google Scholar 

  • Rhode WS, Smith PH, Oertel D (1983b) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J Comp Neurol 213:426–447

    Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized neurons in the ventral cochlear nucleus of the cat. J Comp Neurol 225:167–186

    Google Scholar 

  • Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK (1986) The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. J Comp Neurol 249:261–278

    Google Scholar 

  • Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the endbulbs of Held. J Comp Neurol 210:239–257

    Google Scholar 

  • Ryugo DK, Willard FH (1985) The dorsal cochlear nucleus of the mouse: A light microscopic analysis of neurons that project to the inferior colliculus. J Comp Neurol 242:381–396

    Google Scholar 

  • Sando I (1965) The anatomical interrelationships of the cochlear nerve fibres. Acta Otolaryngol 59:417–436

    Google Scholar 

  • Schweitzer L, Cant NB (1984) Development of the innervation of the dorsal cochlear nucleus of the hamster. J Comp Neurol 225:228–243

    Google Scholar 

  • Smith PH, Rhode WS (1985) Electron microscopic features of physiologically characterised, HRP-labeled fusiform cells in the cat dorsal cochlear nucleus. J Comp Neurol 237:127–143

    Google Scholar 

  • Smith PH, Rhode WS (1987) Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol 266:360–375

    Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282:595–616

    Google Scholar 

  • Snyder RL, Leake PA (1988) Intrinsic connections within and between cochlear nucleus subdivisions in cat. J Comp Neurol 278:209–225

    Google Scholar 

  • Thompson GC, Cortez AM, Lam DM-K (1985) Localization of GABA immunoreactivity in the auditory brainstem of guinea pigs. Brain Res 339:119–122

    Google Scholar 

  • Tolbert LP, Morest DK (1982a) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Golgi and Nissl methods. Neuroscience 7:3013–3030

    Google Scholar 

  • Tolbert LP, Morest DK (1982b) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy. Neuroscience 7:3053–3068

    Google Scholar 

  • Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labelling of identified cell types. Neuroscience 7:3031–3052

    Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474

    Google Scholar 

  • Warr WB (1983) Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. Contrib Sens Physiol 7:1–38

    Google Scholar 

  • Webster DB, Trune DR (1982) Cochlear nuclear complex of mice. Am J Anat 163:103–130

    Google Scholar 

  • Webster DB, Ackerman RF, Longa GC (1968) Central auditory system of the kangaroo rat, Dipodymus merriami. J Comp Neurol 133:477–494

    Google Scholar 

  • Wenthold RJ (1987) Evidence for a glycinergic pathway connecting the two cochlear nuclei: An immunohistochemical and retrograde transport study. Brain Res 415:183–187

    Google Scholar 

  • Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA (1986) Immunocytochemical localisation of GABA in the cochlear nucleus of the guinea pig. Brain Res 380:7–18

    Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neuroscience 22:897–912

    Google Scholar 

  • Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276:423–435

    Google Scholar 

  • Wexler DN, Gulley RL (1978) Cytoarchitecture of the guinea pig cochlear nucleus. Soc Neurosci Abstr 4:12

    Google Scholar 

  • Wickesberg RE, Oertel D (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J Comp Neurol 268:389–399

    Google Scholar 

  • Willard FH, Ryugo DK (1983) Anatomy of the central auditory system. In: Willot JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 201–304

    Google Scholar 

  • Wouterlood FG, Mugnaini E (1984) Cartwheel neurons of the dorsal cochlear nucleus: A Golgi-electron microscope study in rat. J Comp Neurol 227:136–157

    Google Scholar 

  • Wouterlood FG, Mugnaini E, Osen KK, Dahl A-L (1984) Stellate neurons in rat dorsal cochlear nucleus with combined Golgi impregnation and electron microscopy: Synaptic junctions and mutual coupling by gap junctions. J Neurocytol 131:639–664

    Google Scholar 

  • Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4:1577–1588

    Google Scholar 

  • Young ED (1980) Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Res 200:23–37

    Google Scholar 

  • Young ED (1985) Response characteristics of neurons of the cochlear nuclei. In: Berlin CI (ed) Hearing science: Recent advances. Taylor and Francis, London, pp 423–460

    Google Scholar 

  • Zook JM, Casseday JH (1982) Cytoarchitecture of the auditory system in the lower brainstem of the mustache bat, Pteronotus parnelli. J Comp Neurol 207:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackney, C.M., Osen, K.K. & Kolston, J. Anatomy of the cochlear nuclear complex of guinea pig. Anat Embryol 182, 123–149 (1990). https://doi.org/10.1007/BF00174013

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174013

Key words

Navigation