Skip to main content
Log in

Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial species composition of methanogenic granules developed on an acetate-propionate-butyrate mixture was characterized. The granules contained high numbers of adhesive methanogens (1012/g dry weight) and butyrate-, isobutyrate-, and propionate-degrading syntrophic acetogens (1011/g dry weight), but low numbers of hydrolytic-fermentative bacteria (109/g dry weight). Prevalent methanogens in the granules included: Methanobacterium formicicum strain T1N and RF, Methanosarcina mazei strain T18, Methanospirillum hungatei strain BD, and a non-filamentous, bamboo-shaped rod species, Methanothrix/Methanosaeta-like strain M7. Prevalent syntrophic acetogens included: a butyrate-degrading Syntrophospora bryantii-like strain BH, a butyrate-isobutyrate degrading non-spore-forming rod, strain IB, a propionate-degrading sporeforming oval-shaped species, strain PT, and a propionate-degrading none-spore-forming sulfate-reducing rod species, strain PW, which was able to grow syntrophically with an H2-utilizing methanogen. Sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, acetate and butyrate but they were involved in propionate degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boone DR (1991) Strain GP6 is proposed as the neotype strain of Methanothrix soehngenii VP pro synon. Methanothrix concilii VP and Methanosaeta concilii VP. Request for an opinion. Int Syst Bacteriol 41:588–589

    Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    Google Scholar 

  • Boone DR, Menaia JAG, Boone JE, Mah RA (1987) Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl Environ Microbiol 53:83–87

    Google Scholar 

  • Boone DR, Whitman WB (1988) Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219

    Google Scholar 

  • Bryant MP, Boone DR (1987) Isolation and characterization of Methanobacterium formicicum MF. Int J System Bacteriol 37:171

    Google Scholar 

  • Dolfing J, Griffioen A, Neerven ARW van, Zevenhuizen LPTM (1985) Chemical and bacteriological composition of granular methanogenic sludge. Can J Microbiol 31:744–750

    Google Scholar 

  • Dubourguier HC, Archer DB, Albagnac G, Prensier G (1988) Structure and metabolism of methanogenic microbial congolomerates. In: Hall ER, Hobson PN (eds) Anaerobic digestion 1988. Pergamon Press, Oxford, pp 13–25

    Google Scholar 

  • Grothenhuis JTC, Smit M, Plugge CM, Xu Y, Lammeren AAM van, Stams AJM, Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57:1942–1949

    Google Scholar 

  • Guyot JP, Noyola A, Monroy O (1990) Evolution of microbial activities and population in granular sludge from an UASB reactor. Biotechnol Lett 12:155–160

    Google Scholar 

  • Hickey RF, Wu WM, Veiga MC, Jones R (1991) Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Sci Technol 24(8):207–255

    Google Scholar 

  • Hulshoff Pol LW, Zeeuw WJ de, Velzeboer CTM, Lettinga G (1983) Granulation in UASB reactor. Water Sci Technol 15:291–304

    Google Scholar 

  • Hulshoff Pol LW, Heihnekamp K, Lettinga G (1988) The selection pressure as a driving force behind the granulation of anaerobic sludge. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anareobic sludge; microbiology and technology. Pudoc, Wageningen, Netherlands, pp 153–161

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Jain MK, Thompson TE, Conway de Macario EE, Zeikus JG (1987) Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii sp. nov. Syst Appl Microbiol 9:77–82

    Google Scholar 

  • Jain MK, Bhatnagar L, Zeikus JG (1988) A taxonomic overview of methanogens. Indian J Microbiol 28:143–177

    Google Scholar 

  • Kenealy W, Zeikus JG (1981) Influence of corrinoid antagonists on methanogen metabolism. J Bacteriol 146:133–140

    Google Scholar 

  • Koornneef E, Macario AJL, Grotenhuis JTC, Conway de Macario E (1990) Methanogens revealed immunologically in granules from five upflow anaerobic sludge blanket (UASB) bioreactors grown on different substrates. FEMS Microbiol Ecol 3:225–230

    Google Scholar 

  • Laanbroek HJ, Abee T, Voogd IM (1982) Alcohol conversion by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133:178–184

    Google Scholar 

  • Lettinga G, Zeeuw WJ de, Hulshoff Pol L, Wiegant WM, Rinzema A (1985) Anaerobic wastewater treatment based on biomass retention with emphasis on the UASB process. In: China State Biogas Association (eds) Anaerobic digestion 1985. Guangzhou, China, pp 279–301

  • Lui Y, Boone DR, Sleat R, Mah RA (1985) Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl Environ Microbiol 49:608–613

    Google Scholar 

  • Macario AJL, Conway de Macario E (1983) Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst Appl Microbiol 4:451–458

    Google Scholar 

  • Macario AJL, Conway de Macario E (1985) Monoclonal antibodies of defined molecular specificity for identification and classification of methanogens and for probing their ecologic niches. In: Macario AJL, Conway de Macario E (eds) Monoclonal antibodies against bacteria, vol 2. Academic Press, Orlando, Fla., pp 213–247

    Google Scholar 

  • Mah RA (1980) Isolation and characterization of Methanococcus mazei. Curr Microbiol 3:321–326

    Google Scholar 

  • McInerney MJ, Bryant MP, Costerton JW (1981) Syntrophomonas wolfei gen nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    Google Scholar 

  • Morgan JW, Evison LM, Forster CF (1991) Changes to the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up. Water Res 25:639–653

    Google Scholar 

  • Mucha H, Lingens F, Trosch W (1988) Conversion of propionate to acetate and methane by syntrophic consortia. Appl Microbiol Biotechnol 27:581–586

    Google Scholar 

  • Patel GB (1984) Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic acetoclastic methanogen. Can J Microbiol 30:1383–1396

    Google Scholar 

  • Patel GB (1992) A contrary view of the proposal to assign a neotype strain for Methanotrix soehngenii. Int J Syst Bacteriol 42:324–326

    Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom, rev., comb. nov. Int J Syst Bacteriol 40:79–82

    Google Scholar 

  • Patel GB, Roth LA, Berg L van den, Clark DS (1976) Characterization of a strain of Methanospirillum hungatei. Can J Microbiol 22:1404–1410

    Google Scholar 

  • Roy F, Samain E, Dubourguier HC, Albagnac G (1986) Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 45:142–147

    Google Scholar 

  • Steib M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390

    Google Scholar 

  • Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Google Scholar 

  • Taylor BF, Oremland RS (1979) Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. Curr Microbiol 3:101–103

    Google Scholar 

  • Thiele JH, Wu WM, Jain MK, Zeikus JG (1990) Ecoengineering high rate anaerobic digestion systems: analysis of improved syntrophic biomethanation catalysts. Biotechnol Bioeng 35:990–999

    Google Scholar 

  • Touzel JP, Albagnac G (1983) Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol Lett 16:241–245

    Google Scholar 

  • Touzel JP, Prensier G, Roustan JL, Thomas I, Dubourguier HC, Albagnac G (1988) Description of a new strain of Methanothrix soehngenii and rejection of Methanothrix concilii as a synonym of Methanothrix soehngenii. Int J Syst Bacteriol 38:30–36

    Google Scholar 

  • Visser FA, van Lier JB, Macario AJL, Conway de Macario E (1991) Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl Environ Microbiol 57:1728–1734

    Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (eds) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimulatory sulfate- or sulfur-oxidizing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 663–679

    Google Scholar 

  • Wolin EA, Wolin MRJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    Google Scholar 

  • Wu WM, Hu JC, Gu XS (1985) Properties of granular sludge in upflow anaerobic sludge blanket (UASB) reactor and its formation. In: China State Biogas Association (eds) Anaerobic digestion 1985. Guangzhou, China, pp 339–354

    Google Scholar 

  • Wu WH, Hu JC, Gu XS, Zhao YZ, Zhang H, Gu GG (1987) Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Water Res 21:789–799

    Google Scholar 

  • Wu WM, Hickey RF, Zeikus JG (1991) Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol 57:3438–3449

    Google Scholar 

  • Yadav VK, Archer DB (1988) Specific inhibition of sulphate-reducing bacteria in methanogenic co-culture. Lett Appl Microbiol 7:165–168

    Google Scholar 

  • Zweeuw W de (1988) Granular sludge in UASB-reactors. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anaerobic sludge; microbiology and technology. Pudoc, Wageningen, Netherlands, pp 132–145

    Google Scholar 

  • Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate decarboxylating non hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    Google Scholar 

  • Zellner G, Winter J (1987) Secondary alcohol as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol 44:323–328

    Google Scholar 

  • Zhao H, Yang D, Woese CR, Bryant MP (1990) Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov., on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. K. Jain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, WM., Jain, M.K., de Macario, E.C. et al. Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl Microbiol Biotechnol 38, 282–290 (1992). https://doi.org/10.1007/BF00174484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174484

Keywords

Navigation