Skip to main content
Log in

Analysis of proton chemical shifts in regular secondary structure of proteins

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The contribution of peptide groups to Hα and Hβ proton chemical shifts can be modeled with empirical equations that represent magnetic anisotropy and electrostatic interactions [Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436–9444]. Using these, a model for the ‘random coil’ reference state can be generated by averaging a dipeptide over energetically allowed regions of torsion-angle space. Such calculations support the notion that the empirical constant used in earlier studies arises from neighboring peptide contributions in the reference state, and suggest that special values be used for glycine and proline residues, which differ significantly from other residues in their allowed ϕ,ψ-ranges. New constants for these residues are reported that provide significant improvements in predicted backbone shifts. To illustrate how secondary structure affects backbone chemical shifts we report calculations on oligopeptide models for helices, sheets and turns. In addition to suggesting a physical mechanism for the widely recognized average difference between α and β secondary structures, these models suggest several additional regularities that should be expected: (a) Hα protons at the edges of β-sheets will have a two-residue periodicity; (b) the Hα2 and Hα3 protons of glycine residues will exhibit different shifts, particularly in sheets; (c) Hβ protons will also be sensitive to local secondary structure, but in different directions and to a smaller extent than Hα protons; (d) Hα protons in turns will generally be shifted upfield, except those in position 3 of type I turns. Examples of observed shift patterns in several proteins illustrate the application of these ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen N.H., Cao B. and Chen C. (1992) Biochem. Biophys. Res. Commun., 184, 1008–1014.

    Google Scholar 

  • Anderson A.G. and Hermans J. (1988) Protein Struct. Funct. Genet., 3, 262–265.

    Google Scholar 

  • Asakura T., Niizawa Y. and Williamson M.P. (1992) J. Magn. Reson., 98, 646–653.

    Google Scholar 

  • Bashford D., Case D.A., Dalvit C., Tennant L. and Wright P.E. (1993) Biochemistry, 32, 8045–8056.

    Google Scholar 

  • Bashford D. and Gerwert K. (1992) J. Mol. Biol., 224, 473–486.

    Google Scholar 

  • Bashford D. and Karplus M. (1990) Biochemistry, 29, 10219–10225.

    Google Scholar 

  • Blanco F.J., Herranz J., González C., Jiménez M.A., Rico M., Santoro J. and Nieto J.L. (1992) J. Am. Chem. Soc., 114, 9676–9677.

    Google Scholar 

  • Bondi A. (1964) J. Chem. Phys. 40, 441–451.

    Google Scholar 

  • Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S. and Karplus M. (1983) J. Comput. Chem., 4, 187–217.

    Google Scholar 

  • BrooksIII C.L. and Case D.A. (1993) Chem. Rev., 93, 2487–2502.

    Google Scholar 

  • Bruix M., Perello M., Herranz J., Rico M. and Nieto M.L. (1990) Biochem. Biophys. Res. Commun., 167, 1009–1014.

    Google Scholar 

  • Buckingham A.D. (1960) Can. J. Chem., 38, 300–307.

    Google Scholar 

  • Bundi A. and Wüthrich K. (1979) Biopolymers, 18, 285–297.

    Google Scholar 

  • Chazin W.J. and Wright P.E. (1988) J. Mol. Biol., 202, 623–636.

    Google Scholar 

  • Chen Y., Reizer J., SaierJr. M.H., Fairbrother W.J. and Wright P.E. (1993) Biochemistry, 32, 32–37.

    Google Scholar 

  • Cross K.J. and Wright P.E. (1985) J. Magn. Reson., 64, 220–231.

    Google Scholar 

  • Dalgarno D.C., Levine B.A. and Williams R.J.P. (1983) Biosci. Rep., 3, 443–452.

    Google Scholar 

  • De Dios A.C., Pearson J.G. and Oldfield E. (1993) Science, 260, 1491–1496.

    Google Scholar 

  • Distefano D.L. and Wand A.J. (1987) Biochemistry, 26, 7272–7281.

    Google Scholar 

  • Finzel B.C., Clancy L.L., Holland D.R., Muchmore S.W., Watenpaugh K.D. and Einspahr H.M. (1989) J. Mol. Biol., 209, 779–791.

    Google Scholar 

  • Grant J.A., Williams R.L. and Scheraga H.A. (1990) Biopolymers, 30, 929–949.

    Google Scholar 

  • Guss J.M., Harrowell P.R., Murata M., Norris V.A. and Freeman H.C. (1986) J. Mol. Biol., 192, 361–387.

    Google Scholar 

  • Haigh C.W. and Mallion R.B. (1980) Prog. NMR Spectrosc., 13, 303–344.

    Google Scholar 

  • Harris R.K. (1986) Nuclear Magnetic Resonance Spectroscopy — A Physicochemical View, Longman, Harlow.

    Google Scholar 

  • Honig B., Sharp K. and Yang A.-S. (1993) J. Phys. Chem., 97, 1101–1109.

    Google Scholar 

  • Jiménez M.A., Blanco F.J., Rico M., Santoro J., Herranz J. and Nieto J.L. (1992) Eur. J. Biochem., 207, 39–49.

    Google Scholar 

  • Kline A.D. and Wüthrich K. (1986) J. Mol. Biol., 192, 869–890.

    Google Scholar 

  • Kuntz I.D., Kosen P.A. and Craig E.C. (1991) J. Am. Chem. Soc., 113, 1406–1408.

    Google Scholar 

  • Lee M.S., PalmerIII A.G. and Wright P.E. (1992) J. Biomol. NMR, 2, 307–322.

    Google Scholar 

  • McConnell H.M. (1957) J. Chem. Phys., 27, 226–229.

    Google Scholar 

  • Moore J.M., Lepre C., Gippert G.P., Chazin W.J., Case D.A. and Wright P.E. (1991) J. Mol. Biol. 221, 533–555.

    Google Scholar 

  • Ösapay K. and Case D.A. (1991) J. Am. Chem. Soc., 113, 9436–9444.

    Google Scholar 

  • Ösapay K., Case D.A. and Cross K.J. (1991) SHIFTS Program, The Scripps Research Institute, La Jolla, CA.

    Google Scholar 

  • Pardi A., Wagner G. and Wüthrich K. (1983) Eur. J. Biochem., 137, 445–454.

    Google Scholar 

  • Pastore A. and Saudek V. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • Pearlman D.A., Case D.A., Caldwell J.C., Seibel G.L., Singh U.C., Weiner P. and Kollman P.A. (1991) AMBER 4.0, University of California, San Francisco, CA.

    Google Scholar 

  • Pettitt M. and Karplus M. (1988) J. Phys. Chem., 92, 3994–3997.

    Google Scholar 

  • Pflugrath J.W., Wiegand G., Huber R. and Vertesy L. (1986) J. Mol. Biol., 189, 383–386.

    Google Scholar 

  • Priestle J.P., Shaer H.-P. and Gruetter M.G. (1989) Proc. Natl. Acad. Sci. USA, 86, 9667–9671.

    Google Scholar 

  • Richardson J.S. (1981) Adv. Protein Chem., 34, 167–339.

    Google Scholar 

  • Sharp K.A. and Honig B. (1990) Annu. Rev. Biophys. Biophys. Chem., 19, 301–332.

    Google Scholar 

  • Skelton N.J., Akke M., Kördel J., Thulin E., Forsén S. and Chazin W.J. (1992) FEBS Lett., 303, 136–140.

    Google Scholar 

  • Spera S. and Bax A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Stockman B.J., Scahill T.A., Strakalaitis N.A., Brunner D.P., Yem A.W. and DeibelJr. M.R. (1992) J. Biomol. NMR, 2, 591–596.

    Google Scholar 

  • Szilágyi L. and Jardetzky O. (1989) J. Magn. Reson., 83, 441–449.

    Google Scholar 

  • Veerapandian B., Gilliland G.L., Raag R., Svensson A.L., Masui Y., Hirai Y. and Poulos T.L. (1992) Protein Struct. Funct. Genet., 12, 10–23.

    Google Scholar 

  • Wang J., Hick A.P., Loh S.N., LeMaster D.M. and Markley J.L. (1992) Biochemistry, 31, 921–936.

    Google Scholar 

  • Warshel A. and Aqvist J. (1991) Annu. Rev. Biophys. Biophys. Chem., 20, 267–298.

    Google Scholar 

  • Weber P.L., Brown S.C. and Mueller L. (1987) Biochemistry, 26, 7282–7290.

    Google Scholar 

  • Williamson M.P. (1990) Biopolymers, 29, 1423–1431.

    Google Scholar 

  • Williamson M.P. and Asakura T. (1991) J. Magn. Reson., 94, 557–562.

    Google Scholar 

  • Williamson M.P. and Asakura T. (1993) J. Magn. Reson. Ser. B, 101, 63–71.

    Google Scholar 

  • Williamson M.P., Asakura T., Nakamura E. and Demura M. (1992) J. Biomol. NMR, 2, 83–98.

    Google Scholar 

  • Wishart D.S., Sykes B.D. and Richards F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Wishart D.S., Sykes B.D. and Richards F.M. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • Zhou N.E., Zhu B.-Y., Sykes B.D. and Hodges R.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ösapay, K., Case, D.A. Analysis of proton chemical shifts in regular secondary structure of proteins. J Biomol NMR 4, 215–230 (1994). https://doi.org/10.1007/BF00175249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175249

Keywords

Navigation