Skip to main content
Log in

Nucleation and growth rates of homogeneously condensing water vapor in argon from shock tube experiments

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A special shock tube process combining a reflected expansion wave with a weak shock wave is analyzed and calibrated. The process is employed to transfer water vapor carried in argon into a known supersaturated state for a short period of time (0.5 ms). During that period steady state homogeneous nucleation takes place followed by condensational growth. Nucleation and growth rates are measured by a 90° Mie-light scattering technique in the temperature range 200–260 K. The results are compared with existing theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

speed of sound

d :

scattering distance

D :

diffusion coefficient

I :

scattered intensity

I 0 :

intensity of incident laser light

J :

nucleation rate

k :

Boltzmann constant

l :

mean free path

L :

latent heat

m :

molecular mass

n :

index of refraction

N :

number of scatterers

p :

pressure

r :

droplet radius

r * :

radius of nucleus of critical size

R w :

gas constant of water

S :

supersaturation, S = p w /p (T)

t :

time

T :

temperature

u :

velocity

v :

scattering volume

V m :

volume of a molecule

x :

distance from diaphragm

α :

sticking coefficient

β :

impingement rate

γ :

ratio of specific heats

λ :

laser wavelength

λ :

heat conductivity

ρ :

density

σ :

surface tension

1:

driven side of shock tube, initial state

3:

state at tail of centered expansion

4:

driver side of shock tube, initial state

d :

droplet

exp:

experimental

w :

wall; water

∞:

flat surface equilibrium

l :

liquid

s :

solid

References

  • Anderson, R. J.; Miller, R. C.; Kassner, J. L.; Hagen, D. C. 1980: A study of homogeneous condensation-freezing nucleation of small water droplets in an expansion cloud chamber. J. Atmos. Sci. 37, 2508–2520

    Google Scholar 

  • Becker, R.; Döring, W. 1935: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 24, 719–752

    Google Scholar 

  • Bratos, M.; Meier, G. E. A. 1976: Two-dimensional, two-phase flows in a Laval nozzle with non equilibrium phase transition. Arch. Mech. 28, 1025–1037

    Google Scholar 

  • Eisenberg, D.; Kauzmann, W. 1969: The structure and properties of water. Oxford: University Press

    Google Scholar 

  • Feder, J.; Russell, K. C.; Lothe, J.; Pound, G. M. 1966: Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15, 111–178

    Google Scholar 

  • Gyarmathy, G. 1963: Zur Wachstumsgeschwindigkeit kleiner Flüssigkeitstropfen in einer übersättigten Atmosphäre. Z. Angew. Math. Phys. 14, 280–293

    Google Scholar 

  • Heist, R. H.; Reiss, H. 1973: Investigation of the homogeneous nucleation of water vapor using a diffusion cloud chamber. J. Chem. Phys. 59, 665–671

    Google Scholar 

  • Hill, P. G. 1966: Condensation of water vapor during supersonic expansion in nozzles. J. Fluid Mech. 25, 593–620

    Google Scholar 

  • Kerker, M. 1969: The scattering of light and other electromagnetic radiation. New York: Academic Press

    Google Scholar 

  • Kotake, S.; Glass, I. I. 1981: Flows with nucleation and condensation. Prog. Aerosp. Sci. 19, 129–196

    Google Scholar 

  • Landau, L. D.; Lifschitz, E. M. 1981: Hydrodynamik. Berlin: Akademie

    Google Scholar 

  • Landolt-Börnstein 1972: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. In: Thermodynamische Eigenschaften von Gemischen, Verbrennung; Wärmeübertragung (ed. Hausen, H.). Vol. 4, part 4/b. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Madonna, L. A.; Sciulli, C. M.; Canjar, L. N.; Pound, G. M. 1961: Low temperature cloud-chamber studies on water vapour. Proc. Phys. Soc. 78, 1218–1222

    Google Scholar 

  • Maybank, J.; Mason, B. J. 1959: The production of ice crystals by large adiabatic expansions of water vapour. Proc. Phys. Soc. 74, 11–15

    Google Scholar 

  • Merzkirch, W. 1987: Flow visualization, 2nd edn. New York: Academic Press

    Google Scholar 

  • Miller, R. C.; Anderson, R. J.; Kassner, Jr., J. L.; Hagen, D. E. 1983: Homogeneous nucleation rate measurements for water over a wide range of temperatures and nucleation rate. J. Chem. Phys. 78, 3204–3211

    Google Scholar 

  • Oertel, H. 1966: Stoßrohre. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Oswatitsch, K. 1942: Kondensationserscheinungen in Überschalldüsen. Z. Angew. Math. Mech. 22, 1–14

    Google Scholar 

  • Peters, F 1983: A new method to measure homogeneous nucleation rates in shock tubes. Exp. Fluids 1, 143–148

    Google Scholar 

  • Peters, F. 1987: Condensation of supersaturated water vapor at low temperatures in a shock tube. J. Phys. Chem. 91, 2487–2489

    Google Scholar 

  • Pruppacher, H. R.; Klett, J. D. 1980: Microphysics of clouds and precipitation. Holland: Reidel

    Google Scholar 

  • Schmelzer, J. 1985: Zur Kinetik des Wachstums von Tropfen in der Gasphase. Z. Phys. Chem. 266, 1121–1134

    Google Scholar 

  • Schnerr, G. 1989: 2-D transonic flow with energy supply by homogeneous condensation: onset condition and 2-D structure of steady Laval nozzle flow. Exp. Fluids 7, 145–156

    Google Scholar 

  • Skelland, A. H. P. 1974: Diffusional mass transfer. New York: Wiley

    Google Scholar 

  • Sonntag, D.; Heinze, D. 1982: Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. Leipzig: VEB

    Google Scholar 

  • Stein, G. D.; Moses, C. A. 1972: Rayleigh scattering experiments on the formation and growth of water clusters nucleated from the vapor phase. J. Colloid Interface Sci. 39, 504–512

    Google Scholar 

  • Van de Hulst, H. C. 1957: Light scattering of small particles. New York: Wiley

    Google Scholar 

  • Vogelsberger, W.; Marx, G. 1976: Zur Krümmungsabhängigkeit der Oberflächenspannung kleiner Tröpfchen. Z. Phys. Chemie 257, 580–586

    Google Scholar 

  • Wagner, P. E. 1985: A constant-angle Mie-scattering method (CAMS) for investigation of particle formation processes. J. Colloid Interface Sci. 105, 456–467

    Google Scholar 

  • Wagner, P. E.; Strey, R. 1981: Homogeneous nucleation rates of water vapor measured in a two-piston cloud chamber. J. Phys. Chem. 85, 2694–2698

    Google Scholar 

  • Wegener, P. P.; Wu, B. J. C. 1977: Gasdynamics and homogeneous nucleation. Adv. Colloid Interface Sci. 7, 325–417

    Google Scholar 

  • Wegener, P. P.; Pouring, A. A. 1964: Experiments on condensation of water vapor by homogeneous nucleation in nozzles. Phys. Fluids 7, 352–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, F., Paikert, B. Nucleation and growth rates of homogeneously condensing water vapor in argon from shock tube experiments. Experiments in Fluids 7, 521–530 (1989). https://doi.org/10.1007/BF00187403

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187403

Keywords

Navigation