Skip to main content
Log in

Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide l-phosphinothricin (glufosinate) differently from untransformed plants

  • Published:
Planta Aims and scope Submit manuscript

Abstract

l-Phosphinothricin (l-Pt)-resistant plants were constructed by introducing a modified phosphinothricin-N-acetyl-transferase gene (pat) via Agrobacterium-mediated gene transfer into tobacco (Nicotiana tabacum L), and via direct gene transfer into carrot (Daucus carota L). The metabolism of l-Pt was studied in these transgenic, Pt-resistant plants, as well as in the untransformed species. The degradation of l-Pt, 14C-labeled specifically at different C-atoms, was analysed by measuring the release of 14CO2 and by separating the labeled degradation products on thin-layer-chromatography plates. In untransformed tobacco and carrot plants, l-Pt was deaminated to form its corresponding oxo acid 4-methylphosphinico-2-oxo-butanoic acid (PPO), which subsequently was decarboxylated to form 3-methylphosphinico-propanoic acid (MPP). This compound was stable in plants. A third metabolite remained unidentified. The l-Pt was rapidly N-acetylated in herbicide-resistant tobacco and carrot plants, indicating that the degradation pathway of l-Pt into PPO and MPP was blocked. The N-acetylated product, l-N-acetyl-Pt remained stable with regard to degradation, but was found to exist in a second modified form. In addition, there was a pH-dependent, reversible change in the mobility of l-N-acetyl-Pt thin-layer during chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ac-Pt:

N-acetyl-phosphinothricin

MPE:

2-methylphosphinico-ethanoic acid

MPP:

3-methylphosphinicopropanoic acid

pat :

phosphinothricin-N-acetyltransferase gene

Pat:

phosphinothricin-N-acetyltransferase

pat41:

pat gene modified for expression in plants

PPO:

4-methylphosphinico-2-oxobutanoic acid

Pt:

phosphinothricin

References

  • Arnold, W., Pühler, A. (1988) A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70, 172–178

    Google Scholar 

  • Bartsch, K., Tebbe, C.C. (1989) Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria. Appl. Environ. Microbiol. 55, 711–716

    Google Scholar 

  • Bartsch, K., Dichmann, R., Schmitt, P., Uhlmann, E., Schulz, A. (1990) Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: cloning, characterization, and overexpression of the gene encoding a phosphinothricin-specific transaminase from Escherichia coli. Appl. Environ Microbiol. 56, 7–12

    Google Scholar 

  • Baulcombe, D.C., Saunders, G.R., Bevan, M.W., Mayo, A.M., Harrison, B.D. (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321, 446–449

    Google Scholar 

  • Bayer, E., Gugel, K.H., Hagele, K., Hagenmaier, H., Jessipow, S., König, W.A., Zähner, H. (1972) Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und Phosphinothricyl-Alanyl-Alanin. Helv. Chim. Acta 55, 224–239

    Google Scholar 

  • Beaucage, S.L., Caruthers, M.H. (1981) Deoxynucleoside phosphoramidites: a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862

    Google Scholar 

  • Bevan, M.W. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721

    Google Scholar 

  • Broer, I., Arnold, W., Wohlleben, W., Pühler, A. (1989) The phosphinothricin-N-acetyltransferase gene as a selection marker for plant genetic engeneering. In: Proceedings of the Braunschweig Symposium on Applied Plant Molecular Biology, pp. 240–246, Galling, G., ed. Technische Universität Braunschweig, Braunschweig

    Google Scholar 

  • Chaleff, R.S., Ray, T.B. (1984) Herbicide-resistant mutants from tobacco cell cultures. Science 223, 1148–1151

    Google Scholar 

  • Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E., Stalker, D.M. (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317, 741–744

    Google Scholar 

  • De Block, M., Bottermann, J., Vandewiele, M., Dockx, J., Thoen, C, Gosselé, V., Movva, N.R., Thompson, C., Van Montagu, M., Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518

    Google Scholar 

  • Dorn, E., Wink, O., Schwalbe-Fehl, M., Kellner, H.M., Asshauer, J. (1986) Degradation of glufosinate ammonium, ammonium-d, l-homoalanine-4-yl-(methyl)-phosphinate in rats. In: 6th International Congress of Pesticide Chemistry, p.10, IUPAC, Ottawa

    Google Scholar 

  • Eckhardt, T. (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1, 584–588

    Google Scholar 

  • Götz, W., Dorn, E., Ebert, E., Leist, K.-H., Kacher, H. (1983) Hoe 39866, a new non-selective herbicide: chemical and toxicological properties — mode of action and metabolism. In: Asian Pacific Weed Sci. Soc., 9. conference, pp. 401–404, Asian Pacific Weed Society, Manila

    Google Scholar 

  • Haas, P. (1986) Verhalten von Glufosinate-Ammonium in Unkräutern. Doctoral Thesis, Stuttgart-Hohenheim

  • Hain, T., Przewozny, T., Schieder, O. (1983) Culture and selection of somatic hybrids using an auxotrophic cell line. Theor. Appl. Genet. 64, 119–122

    Google Scholar 

  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180

    CAS  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichenholtz, D., Rogers, S.G., Fraley, R.T. (1985) A simple and general method for transforming genes into plants. Science 227, 1229–1231

    CAS  Google Scholar 

  • Langelüdeke, P., Krause, D., Rose, E., Wallmüllder, F., Walther, K.H. (1981) Unkrautbekämpfung mit Hoe 39866 im Obstund Weinbau. Mitt. Biol. Bundesanst. Landund Forstw. 203, 256

    Google Scholar 

  • Lea, P.J., Joy, K.W., Ramos, J.L., Guerrero, M.G. (1984) The action of the 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23, 1–6

    Google Scholar 

  • Lütcke, H.A., Clow, K.C., Michel, F.S., Moss, K.A., Kern, H.F., Schule, G.A. (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J. 6, 43–48

    Google Scholar 

  • Maliga, P., Breznovitz, A., Marton, L. (1973) Streptomycin resistant plants from callus cultures of tobacco. Nature New Biol. 244, 29–30

    Google Scholar 

  • Maniatis, T., Fritsch, E.F., Sambrook, J. (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Miflin, B.J., Lea, P.J. (1980) Amino acids and derivatives. In: The biochemistry of plants, vol 5, pp. 169–202, Miflin, B.J., ed. Academic Press, New York

    Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497

    Google Scholar 

  • Passera, C., Pedrotti, A., Ferrari, G. (1964) Thin-layer chromatography of carboxylic acids and keto acids of biological interest. J. Chromatogr. 14, 289–291

    Google Scholar 

  • Pipke, R., Amrhein, N., Jacob, G.S., Schaefer, J., Kishore, G.M. (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur. J. Biochem. 165, 267–273

    Google Scholar 

  • Potrykus, I., Shillito, R.D. (1986) Protoplasts: isolation, culture, plant regeneration. Methods Enzymol. 118, 576–577

    Google Scholar 

  • Pröls, M., Töpfer, R., Schell, J., Steinbiß, H.H. (1988) Transient gene expression in tobacco protoplasts: I. Time course of CAT appearance. Plant Cell Rep. 7, 221–224

    Google Scholar 

  • Sauer, H., Wild, A., Rühle, W. (1987) The effect of phosphinothricin (glufosinate) on photosynthesis. II. The causes of inhibition of photosynthesis. Z. Naturforsch. 42c, 270–287

    Google Scholar 

  • Schulz, A., Taggeselle, P., Tripier, D., Bartsch, K. (1990) Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: Isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli. Appl. Environ. Microbiol. 56, 1–6

    Google Scholar 

  • Schwerdtle, F., Bieringer, H., Finke, M. (1981) Hoe 039866 — ein neues nicht selektives Blattherbizid. Pflanzenkrankh. Pflanzenschutz 9, 431–440

    Google Scholar 

  • Shillito, R.D., Paszkowski, J., Potrykus, I. (1983) Agarose plating and a bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep. 2, 244–247

    Google Scholar 

  • Simon, R., Priefer, U.B., Pühler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gramnegative bacteria. Bio/Technology 1, 784–791

    Google Scholar 

  • Smith, A.E. (1988) Persistence and transformation of the herbicide [14C]-glufosinate-ammonium in prairie soils under laboratory conditions. J. Agric. Food Chem. 36, 393–397

    Google Scholar 

  • Strauch, E., Wohlleben, W., Pühler, A. (1988) Cloning of the phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tü 494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63, 65–74

    Google Scholar 

  • Tachibana, K., Watanabe, T., Seikizawa, Y., Takematsu, T. (1986a) Inhibition of the glutamine synthetase and quantitative changes of free ammino acids in shoots of bialaphos treated Japanese barnyard millet. J. Pest. Sci. 11, 27–31

    Google Scholar 

  • Tachibana, K., Watanaba, T., Seikizawa, Y., Takematsu, T. (1986b) Accumulation of ammonia in plants treated with bialaphos. J. Pest. Sci. 11, 33–37

    Google Scholar 

  • Talbot, H.W., Johnson, L.M., Munnecke, D.M. (1984) Glyphosate utilization by Pseudomonas sp. tand Alcaligenes sp. isolated from environmental sources. Curr. Microbiol. 10, 255–260

    Google Scholar 

  • Tebbe, C.C. (1988) Abbau des Herbizids Phosphinothricin (Glufosinate) im Boden und in Reinkulturen von Bodenmikroorganismen. Doctoral Thesis, Münster

  • Tebbe, C.C., Reber, H.H. (1988) Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Appl. Microbiol. Biotechnol. 29, 103–105

    Google Scholar 

  • Thompson, C.J., Movva, R.N., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M., Bottermann, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 9, 2519–2523

    Google Scholar 

  • Wild, A., Ziegler, C. (1989) The effect of bialaphos on ammoniumassimilation and photosynthesis. I. Effect on the enzymes of ammonium-assimilation. Z. Naturforsch. 44c, 97–102

    Google Scholar 

  • Wild, A., Sauer, H., Rühle, W. (1987) The effect of phosphinothricin (glufosinate) on photosynthesis. I. Inhibition of photosynthesis and accumulation of ammonia. Z. Naturforsch. 42c, 263–269

    Google Scholar 

  • Wohlleben, W., Arnold, W., Broer, L, Hillemann, D., Strauch, E., Pühler, A. (1988) Nucleotide sequence of the phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tü 494 and its expression in Nicotiana tabacum. Gene 70, 25–37

    Google Scholar 

  • Ziegler, C., Wild, A. (1989) The effect of bialaphos on ammoniumassimilation and photosynthesis. II. Effect on photosynthesis and photorespiration. Z. Naturforsch. 44c, 103–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by a grant from Hoechst AG, Pflanzenschutz, Frankfurt/Main, FRG. The authors wish to thank E. Strauch and W. Arnold (Lehrstuhl f. Genetik, Universität Bielefeld, FRG) for supplying plasmids; R. Eichenlaub (Lehrstuhl f. Mikrobiologie und Gentechnologie, Universität Bielefeld, FRG) for the synthesized oligonucleotides; and I.M. Pretorius-Güth (Lehrstuhl f. Genetik, Universität Bielefeld, FRG) and K. Severin (Lehrstuhl f. Allgemeine Genetik, Universität Tübingen, FRG) for reading the manuscript. W. Droge acknowledges the receipt of a scholarship from DECHEMA, Frankfurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dröge, W., Broer, I. & Pühler, A. Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide l-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187, 142–151 (1992). https://doi.org/10.1007/BF00201636

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201636

Key words

Navigation