Skip to main content
Log in

2p X-ray absorption of titanium in minerals

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Ti 2p X-ray absorption spectra for a series of minerals have been measured. Crystal field multiplet calculations can explain the spectral shape. The asymmetry of the e g , peak is shown to be related to distortions of the Ti IV octahedron. It is found, theoretically as well as experimentally, that the absorption spectra are more sensitive to tetragonal distortions than to trigonal distortions. A number of silicate minerals and metamict minerals containing titanium are measured and Ti IIIhas not been observed in any of these minerals. A comparison is made to the 1s X-ray absorption, and the potential of both for the study of minerals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbate M, de Groot FMF, Fuggle JC, Fujimori A, Tokura Y, Fujishima Y, Strebel O, Domke M, Kaindl G, Elp J van, Thole BT, Sawatzky GA, Sacchi M, Tsuda N (1991) Soft X-ray absorption studies of the location of extra charges induced by substitution in controlled-valence materials. Phys Rev B 44:5419–5422

    Google Scholar 

  • Abbate M, Goedkoop JB, de Groot FMF, Grioni M, Fuggle JC, Hofmann S, Petersen H, Sacchi M (1992) Probing depths of soft X-ray absorption spectroscopy in total electron yield mode. Surf Int Anal (in press)

  • Al-shamma F, Fuggle JC (1990) A bibliography for high-energy spectroscopy studies of high T C superconductors (1987–1989). Physica C 169:325–346

    Google Scholar 

  • Baur WH (1961) Atomic distances and angles in brookite TiO 2 (in German). Acta Crystallogr 14:214–216

    Google Scholar 

  • Brydson R, Sauer H, Engel W, Thomas JM, Zeitler E, Kosugi N, Kuroda H (1989) Electron Energy Loss and X-ray absorption of rutile and anatase: a test of structural sensitivity. J Phys Cond Matter 1:797–812

    Google Scholar 

  • Chen CT, Sette F (1990) Performance of the Dragon soft X-ray beamline. Rev Sci Instrum 60:1616–1621

    Google Scholar 

  • Cowan RD (1981) The theory of atomic structure and spectra. University of California Press, Berkeley, USA

    Google Scholar 

  • Cramer SP, Tench O, Yocum M, George GN (1988) A 13-element Ge-detector for fluorescence EXAFS. Nucl Instrum Methods A 266:586–591

    Google Scholar 

  • Cramer SP, George SJ, Kraner H, Rogers L, Rescia S, Radeka V, Yocum M, Colaresi J, Tench O, Mullins OC (1991) Fluorescence XAFS array detectors for 03 eV–20 keV. In: Hasnain SS (ed): X-ray Absorption Fine Structure. Ellis Horwood, Chichester, pp 640–645

    Google Scholar 

  • Cromer DT, Herrington K (1955) The structures of anatase and rutile. Am Chem Soc J 77:4708–4709

    Google Scholar 

  • de Groot FMF, Grioni M, Fuggle JC, Ghijsen J, Sawatzky GA, Petersen H (1989) Oxygen 1 s X-ray absorption edges of transition metal oxides. Phys Rev B 40:5715–5723

    Google Scholar 

  • de Groot FMF, Fuggle JC, Thole BT, Sawatzky GA (1990a) L 23 X-ray absorption edges of do compounds: K + Ca2+ Sc3+and Ti 4+ in O h (octahedral) symmetry. Phys Rev B 41:928–937

    Google Scholar 

  • de Groot FMF, Fuggle JC, Thole BT, Sawatzky GA (1990b) 2p X-ray absorption of 3d transition metal compounds: An atomic multiplet description including the crystal field. Phys Rev B 42:5459–5468

    Google Scholar 

  • de Groot FMF (1991) Theory of X-ray absorption. In: Czaja CJ (ed) Proceedings of the Ascona Workshop on selected experiments with Synchrotron Radiation, Birkhäuser Verlag, Basel

    Google Scholar 

  • Durmeyer O, Kappler JP, Beaurepaire E, Heintz JM, Drillon M (1990a) Ti K XANES in superconducting LiTi 2 O 4 related compounds. J Phys Cond Matter 2:6127–6136

    Google Scholar 

  • Durmeyer O, Kappler JP, Beaurepaire E, Heintz JM, Drillon M (1990b) Temperature dependence of the Ti K edge XANES and EXAFS in some oxide spinel compounds. In: Balerna A, Bersiani E, Mobilio S (eds) Conference Proceedings, vol 25, 2nd European Conference on Progress in X-ray Synchrotron Radiation Research. SIF Bologna, pp 761–764

  • Grioni M, Czyzyk MT, de Groot FMF, Fuggle JC, Watts BE (1989) Unoccupied electronic states of CuO: An oxygen 1s X-ray absorption spectroscopy investigation. Phys Rev B 39:4886–4890

    Google Scholar 

  • Günter JR, Jameson GB (1984) Orthorhombic barium orthotitanate a′-Ba 2 TiO 4 . Acta Crystallogr C 40:207–210

    Google Scholar 

  • Hartman P (1969) Can Ti 4+replace Si 4+in silicates? Miner Mag 37:366–369

    Google Scholar 

  • Hawthorne FC, Grundy HD (1973) The crystal chemistry of the amphiboles II: Refinement of the crystal structure of oxy-kaersutite. Miner Mag 39:390–400

    Google Scholar 

  • Horn M, Schwerdtfeger CF, Maegher EP (1972) Refinement of the structure of anatase at several temperatures. Z Kristallogr 136:273–281

    Google Scholar 

  • Kitamura M, Tokonami M (1971) The crystal structure of kaersutite. Tohoku University Science Reports 11:125–141

    Google Scholar 

  • Kitamura M, Tokonami M, Morimoto N (1975) Distribution of titanium atoms in oxy-kaersutite. Contr Miner Petrol 51:167–172

    Google Scholar 

  • Leapman RD, Grünes LA, Fejes PL (1982) Study of the L 2,3 edges in the 3 d transition metals and their oxides by electron-energyloss spectroscopy with comparisons to theory. Phys Rev B 26:614–635

    Google Scholar 

  • Lima de Faria J (1964) dentification of metamict minerals by X-ray powder photographs. Estud Ens Doc 112

  • Machado-Corta A (1937) Inventory of Minerals: Mineralogical and Geological Museum. Lisbon University, Portugal, pp 361

    Google Scholar 

  • Moore PB, Louisnathan SJ (1969) The crystal structure of fresnoite Ba2(TiO)Si2O7. Z Kristallogr 130:438–448

    Google Scholar 

  • Natoli R, Benfatto M (1986) A Unifying scheme of interpretation of X-ray absorption spectra based on multiple scattering theory. J Phys Coll C8 47:11–14

    Google Scholar 

  • Newhouse WH (1936) Bull Geol Soc Am 47:1–35

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Otten MT, Busek PR (1987) The oxidation state of Ti in Horenblende and Biotite determined by EELS with inferences regarding δi substitution. Phys Chem Minerals 14:45–51

    Google Scholar 

  • Palache C, Berman H, Frondel C (1944) Dana's system of mineralogy, vol I. Wiley, New York, pp 834

    Google Scholar 

  • Petersen H (1986) The high energy plane grating monochromators at BESSY. Nucl Instrum Methods A 246:260–263

    Google Scholar 

  • Sette F, Sinkovic B, Ma YJ, Chen CT (1989) Crystal Field Splitting of core-excitions in ionic crystals. Phys Rev B 39:11125

    Google Scholar 

  • Silva CL (1977) Chemical modifications on clinopyroxene zoned phenocrystals from alkaline gabbro (Santiago Island Capo Verde): Possible application as a geobarometer (in Portuguese). Com Serv Geol Portugal LXII:35–43

    Google Scholar 

  • Silva CL, Ubaldo ML (1985) Petrogenetial and geological considerations on globular carbonatitic tuffs from the alkaline-carbonatitic structure of North Santiago Island Capo Verde Garcia de Orta (in Portuguese). Garcia de Orta Ser Geol 8:1–6

    Google Scholar 

  • Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite CaTiOSiO 4 and the domain texture of natural titanites. Am Mineral 61:238–247

    Google Scholar 

  • Tohji K, Udagawa Y (1989) X-ray Raman scattering as a substitute for soft X-ray extended X-ray absorption fine structure. Phys Rev B 39:7590–7594

    Google Scholar 

  • Uozumi T, Okada K, Kotani A, Durmeyer O, Kappler JP, Beaurepaire E, Parlebas JC (1991) Experimental and theoretical investigation of the pre-peaks at the Ti K-edge absorption spectra in TiO2. Tech Rep ISSP A 2484:1–18

    Google Scholar 

  • Waychunas GA (1980) Valence coordination number and site geometry from K-edge and extended fine structure (EXAFS) X-ray spectra of iron minerals and compounds. Prog Geol Soc Am Annu Meet 12:545–546

    Google Scholar 

  • Waychunas GA (1987) Synchrotron Radiation XANES of Ti in minerals.: Effects of Ti bonding distances Ti valence and site geometry on absorption edge structure. Am Mineral 72:89–101

    Google Scholar 

  • Waychunas GA, Brown Jr GE (1990) Polarized X-ray absorption spectra of metal ions in minerals. Phys Chem Minerals 17:420–430

    Google Scholar 

  • Wechsler BA, Prewitt CT (1984) Crystal structure of ilmenite (FeTiO3) at high temperature and high pressure. Am Mineral 69:176–185

    Google Scholar 

  • Weijs PJW, Czyzyk MT, van Acker JF, Speier W, Goedkoop JB, van Leuken H, Hendrix HJM, de Groot RA, van der Laan G, Buschow KHJ, Wiech G, Fuggle JC (1990) Core hole effects in the X-ray absorption spectra of transition metal suicides. Phys Rev B 41:11899

    Google Scholar 

  • Whipple ER (1979) Errors in chemical analyses of two titanian micas. Am Mineral 64:1311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Groot, F.M.F., Figueiredo, M.O., Basto, M.J. et al. 2p X-ray absorption of titanium in minerals. Phys Chem Minerals 19, 140–147 (1992). https://doi.org/10.1007/BF00202101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202101

Keywords

Navigation