Skip to main content
Log in

Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The room-temperature Raman spectra of aragonite, magnesite and dolomite have been recorded up to 30 GPa and 25 GPa, respectively and no phase changes were observed during compression, unlike calcite. The effect of temperature on the room-pressure Raman spectra of calcite, aragonite, magnesite and dolomite is reported up to 800–1100 K. The measured relative pressure and temperature-shifts of the Raman lines are greater for the lattice modes than for the internal modes of the CO3 groups. These shifts are used to calculate the mode anharmonic parameters of the observed Raman modes; they are negative and their absolute values are smaller (close to 0) for the internal CO3 modes than for the lattice modes (4–17 10−5 K−1). The temperature shifts of the lattice modes in calcite are considerably larger than those for dolomite and magnesite, and a marked non-linear increase in linewidth is observed above 400° C for calcite. This is consistent with an increasing relaxational component to the libration of the CO3 groups about their threefold axes, premonitory to the rotational order-disorder transition at higher temperature. This behaviour is not observed for the other calcite structured minerals in this study. We examine systematic variations in the lattice mode frequencies and linewidths with composition, to begin to understand these differences in their anharmonic behaviour. Finally, we have used a simple Debye-Waller model to calculate atomic displacements in calcite, magnesite and dolomite with increasing temperature from the vibrational frequency data, to provide a direct comparison with atomic positional data from high-temperature structure refinements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudour JL, Sanquer M (1974) A constrained refinement of the structure of durene including “wagging” vibrations of the methyl groups. Acta Crystallogr B 30:2371–2378

    Google Scholar 

  • Baudour JL, Delugeard Y, Sanquer M (1974) On the isomorphism of p-terphenyl and phenyl isocyanate dimer. Acta Crystallogr 630:691–696

    Google Scholar 

  • Biellmann C, Gillet Ph (1992) High-pressure and high-temperature behaviour of calcite, aragonite and dolomite: a Raman spectroscopic study. Eur J Mineral 4:389–393

    Google Scholar 

  • Biellmann C, Gillet Ph, Guyot F, Peyronneau J, Raynard B (1992) Experimental evidence for carbonates stability in the Earth's lower mantle. Earth Planet Sci Lett (submitted)

  • Birch F (1966) Compressibility: Elastic constants. In: Clark SP, Jr (ed) Handbook of Physical Constants. Geol Soc Am Mem 97, Geol Soc Am, Boulder, CO, pp 107–173

    Google Scholar 

  • Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Am Mineral 70:581–589

    Google Scholar 

  • Bréhat F, Wyncke B (1985) Analysis of the temperature-dependent infrared active lattice modes in the ordered phase of sodium nitrate. J Phys C 18:4247–4259

    Google Scholar 

  • Bridgman PW (1939) The high-pressure behaviour of miscellaneous minerals. Am J Sci 37:7–18

    Google Scholar 

  • Brock CP, Dunitz JD (1982) Temperature dependence of thermal motion in crystalline naphthalene. Acta Crystallogr B38:2218–2228

    Google Scholar 

  • Cabannes J (1942) Symétrie des oscillations fondamentales. Rev Sci 80:407

    Google Scholar 

  • Christoe CW, Iqbal Z (1977) Raman scattering study of the dynamics of the pressure-induced phase transition in thallium azide (T1N3). J Phys Chem Solids 38:1391–1394

    Google Scholar 

  • Collerson B, Williams Q, Knittle E (1991) Vibrational spectra of MgCO3-magnesite and CaCO3 (III) at high pressures. EOS Trans Am Geophys Union 72:436

    Google Scholar 

  • Couture L (1947) Etude des spectres de vibrations de monocristaux ioniques. Ann Phys. 12:5–65

    Google Scholar 

  • Cowley ER, Pant AK (1973) Lattice dynamics of calcite. Phys Rev B 8:4795–4800

    Google Scholar 

  • Cruikshank DWJ (1956) The variation of vibration amplitudes with temperature in some molecular crystals. Acta Crystallogr 9:1005–1009

    Google Scholar 

  • Dove MT, Powell BM (1989) Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K. Phys. Chem Minerals 16:503–507

    Google Scholar 

  • Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Fiquet G, Gillet Ph, Richet P (1992) Anharmonicity and high-temperature heat capacity of crystals: the examples of Mg2GeO4, Ca2GeO4, MgCaGeO4 olivines. Phys Chem Minerals 18:469–479

    Google Scholar 

  • Fong MY, Nicol M (1971) Raman spectrum of calcium carbonate at high-pressures. J Chem Phys. 54:579–585

    Google Scholar 

  • Frech R, Wang EC, Bates JB (1980) The IR and Raman spectra of CaCO3 (aragonite). Spectrochim Acta 36A:915–919

    Google Scholar 

  • Gillet Ph, Gérard Y, Willaime C (1987) The calcite-aragonite transition: mechanism and microstructures induced by the transformation stresses and strain. Bull Minéral 110:481–496

    Google Scholar 

  • Gillet Ph, Malezieux JM, Dhamelincourt MC (1988) Microraman multichannel spectroscopy up to 2.5 GPa using a sapphire-anvil cell: experimental set-up and some applications. Bull Minéral 111:1–15

    Google Scholar 

  • Gillet Ph, Guyot F, Malézieux JM (1989) High pressure and high temperature Raman spectroscopy of Ca2GeO4: some insights on anharmonicity. Phys Earth Planet Inter 58:141–154

    Google Scholar 

  • Gillet Ph, LeCléac'h A, Madon M (1990) High-temperature Raman spectroscopy of the SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperature. J Geophys Res B95:21635–21655

    Google Scholar 

  • Gillet Ph, Richet P, Guyot F, Fiquet G (1991) High-temperature properties of forsterite. J Geophys Res, B96:11805–11816

    Google Scholar 

  • Gillet Ph, Fiquet G, Malézieux JM, Geiger C (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Mineral 4:651–664

    Google Scholar 

  • Griffith WP (1969) Raman spectroscopy of minerals. Nature 224:264–266

    Google Scholar 

  • Hellwege KH, Lesch W, Plihal M, Schaack G (1970) Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur. Z. Phys. 232:61–86

    Google Scholar 

  • Herzberg G (1945) Molecular spectra and molecular structure. II. Infrared and Raman spectra of polyatomic molecules. Van Nostrand, New York

    Google Scholar 

  • Hexter RM (1958) High-resolution, temperature-dependent spectra of calcite. Spectros Chim Acta 10:281–290

    Google Scholar 

  • Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the joint CaCO3-MgCO3 to 36 kb. Geochim Cosmochim Acta 39:35–53

    Google Scholar 

  • Jacobson JL, Nixon ER (1968) Infrared dielectric response and lattice vibrations of calcium and strontium oxydes. J Phys Chem Solids 29:967–976

    Google Scholar 

  • Katsura T, Ito E (1990) Melting and subsolidus phase relations in the MgSiO3-MgCO3 system at high-pressures: implications to evolution of the Earth's atmosphere. Earth Planet Sci Lett 99:110–117

    Google Scholar 

  • Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev Geophys Space Phys 17:827–849

    Google Scholar 

  • Kraft S, Knittle E, Williams Q (1991) Carbonate stability in the Earth's mantle: a vibrational study of aragonite and dolomite at high pressures and temperatures. J Geophys Res 96:17997–18009

    Google Scholar 

  • Krishnamurti D (1956) Raman spectrum of magnesite. Proc Indian Ac Sci A43:210–212

    Google Scholar 

  • Krishnamurti D (1957) The Raman spectrum of calcite and its interpretation. Proc Indian Ac Sci A46:183–202

    Google Scholar 

  • Liu LG, Mernagh TP (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral 41:745–756

    Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600

    Google Scholar 

  • Martens R, Rosenhauer M, Gehlen Kv (1982) Compressibilities of carbonates. In: WSchreyer (ed) High Pressure Researches in Geoscience. Schweizerbart'sche, Stuttgart, pp 215–222

    Google Scholar 

  • Megaw HD (1970) Thermal vibrations and a lattice mode in calcite and sodium nitrate. Acta Crystallogr A26:236–244

    Google Scholar 

  • Merrill L, Bassett WA (1975) The crystal structure of CaCO3 (II), a high-pressure meteastable phase of calcium carbonate. Acta Crystallogr B31:343–349

    Google Scholar 

  • Neuman G, Vogt H (1978) Rayleigh wing scattering in disordered sodium nitrate. Phys Status Solidi 85:179–184

    Google Scholar 

  • Nicola JH, Scott JF, Couto RM, Correra MM (1976) Raman spectra of dolomite (CaMg(CO3)2). Phys. Rev B14:4676–4678

    Google Scholar 

  • Piriou B (1974) Etude des modes normaux par réflexion infrarouge. Ann Chim 9:9–17

    Google Scholar 

  • Plihal M, Shaack G (1970) Lattice dynamics of calcite structure. I. Normal frequencies and normal modes at zero wave vectors. Phys Status Solidi 42:495–506

    Google Scholar 

  • Plihal M (1973) Lattice dynamics of calcite structure. II. Dispersion curves and phonons densities. Phys Status Solidi 56:485–496

    Google Scholar 

  • Porto SPS, Giordmaine JA, Damen TC (1966) Depolarization of Raman scattering in calcite. Phys Rev 147:608–611

    Google Scholar 

  • Redfern SAT, Salje E, Navrotsky A (1989) High-temperature enthalpy at the orientational order-disorder transition in calcite: implications for the calcite/aragonite phase equilibrium. Contrib Mineral Petrol 101:479–484

    Google Scholar 

  • Reeder RJ (ed) (1983) Carbonates: Mineralogy and Chemistry. Rev Mineral 11. Mineralogical Society Washington DC, pp 394

    Google Scholar 

  • Reeder RJ, Markgraf SA (1986) High-temperature crystal chemistry of dolomite. Am Mineral 71:769–776

    Google Scholar 

  • Ross SD (1972) Inorganic Infrared and Raman spectroscopy. McGraw-Hill, New York

    Google Scholar 

  • Ross NL, Reeder RJ (1992) High pressure structural study of dolomite and ankerite. Am Mineral 77:412–421

    Google Scholar 

  • Rousseau DL, Miller RE, Leroi GE (1968) Raman spectrum of crystalline sodium nitrate. J Chem Phys 48:3409–3413

    Google Scholar 

  • Rutt HN, Nicola JH (1974) Raman spectra of carbonates of calcite structure. J Phys C 7:4522–4528

    Google Scholar 

  • Salje E, Viswanathan K (1976) The phase diagram calcite-aragonite as derived from the crystallographic properties. Contrib Mineral Petrol 55:55–77

    Google Scholar 

  • Sakurai T, Sato T (1971) Temperature dependence of vibrational spectra in calcite by means of emissivity measurement. Phys. Rev B4:583–591

    Google Scholar 

  • Schmahl WW, Salje E (1989) X-Ray diffraction study of the orientational order/disorder transition in NaNO3: evidence for order parameter coupling. Phys Chem Minerals 16:790–798

    Google Scholar 

  • Schroeder RA, Weir CE, Lippincott ER (1962) Lattice frequencies and rotational barriers for inorganic carbonates and nitrates from low-temperature infrared spectroscopy. J Res Natn Bur Stand 66A:407–434

    Google Scholar 

  • Shen TY, Mitra SS, Prask H, Trevino SF (1975) Order-disorder phenomenon in sodium nitrate studied by low frequency Raman scattering. Phys Rev B 12:4530–4533

    Google Scholar 

  • Vo-Than, Lacam A (1984) Experimental study of the elasticity of single crystalline calcite under high pressure (the calcite I-calcite II transition at 14.6 kbar). Phys Earth Planet Inter 34:195–203

    Google Scholar 

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The Infrared spectra of minerals, Mineralogical Society, London, pp 87–110

    Google Scholar 

  • Yasaka H, Sakai A, Yagi T (1985) A central peak in the orderdisorder phase transition of sodium nitrate. J Phys Soc Japan 54:3697–3700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillet, P., Biellmann, C., Reynard, B. et al. Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Minerals 20, 1–18 (1993). https://doi.org/10.1007/BF00202245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202245

Keywords

Navigation