Skip to main content
Log in

Silicon K-edge XANES spectra of silicate minerals

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO 4−4 cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams IM, Thomas JM, Bancroft GM (1972) An ESCA study of silicate minerals. Earth Planet Sci Lett 16:429–432

    Google Scholar 

  • Adams IM, Evans S, Raid PI, Thomas JM, Walters MJ (1977) Quantitative analysis of aluminosilicates and other solids by x-ray photoelectron spectroscopy. Anal Chem 49:2001–2008

    Google Scholar 

  • Brytov IA, Romashchenko YuN (1978) X-ray spectroscopic investigation of the electronic structure of silicon and aluminum oxides. Sov Phys Solid State 20:384–389

    Google Scholar 

  • Brytov IA, Konashenol KI, Romashchenko YuN (1979) Crystallochemical effects on Al K and Si K emission and absorption spectra for silicate and aluminosilicate minerals. Geochem Intern 16:142–154

    Google Scholar 

  • Dehmer JL (1972) Evidence of effective potential barriers in the x-ray absorption spectra of molecules. J Chem Phys 56:4496–4504

    Google Scholar 

  • Dikov YuP, DEbolsky EI, Romashchenko YuN, Dolin SP, Levin AA (1977) Molecular orbitals of Si2 7/6−0 , Si3 10/8−0 , etc., and mixed (B, Al, P, Si) m applied to clusters and x-ray spectroscopy data of silicates. Phys Chem Minerals 1:27–41

    Google Scholar 

  • Evans S, Raftery E (1980) Quantitative x-ray photoelectron diffraction studies of single-crystal silicates. Solid State Commun 33:1213–1215

    Google Scholar 

  • Evans S, Adams JM, Thomas JM (1979) The surface structure and composition of layered silicate minerals: novel insight from x-ray photoelectron diffraction, K-emission spectroscopy and cognate techniques. Phil Trans R Soc Lond A292:563–591

    Google Scholar 

  • Ferrett TA, Lindle DW, Heimann PA, Kerkhoff HG, Becker UE, Shirley DA (1986) Sulfur 1 s core-level photoionization of SF6. Phys Rev A 34:1916–1930

    Google Scholar 

  • Grimmer AR, Fechner RP, Molgedey G (1981) High-resolution 29Si NMR in solid silicates, correlations between shielding tensor and Si-O bond length. Chem Phys Lett 77:331–335

    Google Scholar 

  • Kinsey RA, Kirkpatrick RJ, Hower J, Smith KA, Oldfield E (1985) High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals. Am Mineral 70:537–548

    Google Scholar 

  • Kirkpatrick RJ (1988) MAS NMR spectroscopy of minerals and glasses. Reviews in Mineralogy 18:341–403

    Google Scholar 

  • Klinowski J (1984) Nuclear magnetic resonance studies of zeolite. Progress in NMR spectroscopy 16:237–309

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Li D, Bancroft GM, Kasrai M, Fleet ME, Feng XH, Tan KH, Yang BX (1993) High-resolution Si Kand L2,3-edge XANES of α-quartz and stishovite. Solid State Commun 87:613–617

    Google Scholar 

  • Li D, Bancroft GM, Kasrai M, Fleet ME, Secco RA, Feng XH, Tan KH, Yang BX (1994a) X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs: structural characterization of opal. Am Mineral 79:622–632

    Google Scholar 

  • Li D, Bancroft GM, Kasrai M, Fleet ME, Feng XH, Tan KH (1994b) Silicon and phosphorus Kand L-edge XANES spectra of crystalline SiP2O7 and amorphous SiO2-P2O5. Am Mineral 79:785–788

    Google Scholar 

  • Liebau F (1985) Structural Chemistry of Silicates: Structure, bonding and classification. Springer-Verlag, Berlin

    Google Scholar 

  • Lippmaa E, Mägi M, Samoson A, Engelhardt G, Grimmer AR (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR. J Am Chem Soc 102:4889–4893

    Google Scholar 

  • Mägi M, Lippmaa E, Samoson A, Engelhardt G, Grimmer AR (1984) Solid-state high-resolution silicon-29 chemical shift in silicates. J Phys Chem 88:1518–1522

    Google Scholar 

  • McComb DW, Brydson R, Hansen PL, Payne RS (1992) Qualitative interpretation of electron energy-loss near-edge structure in natural zircon. J Phys Condensed Matter 4:8363–8374

    Google Scholar 

  • Nefedov VI, Yarzhemsky VG, Chuvaev AV, Trishkina EM (1988) Determination of effective atomic charge, extra-atomic relaxation and Madelung energy in chemical compounds in the bases of x-ray photoelectron and Auger transition energies. J Electron Spectrosc Reltd Phenom 46:381–404

    Google Scholar 

  • Pitault B, Belin E, Boutouaba D, Senemaud C (1981) K x-ray emission spectra from natural silicates. Chem Phys Lett 81:123–126

    Google Scholar 

  • Purton J, Urch DS (1989) High-resolution silicon 121–01 x-ray spectra and crystal structure. Mineral Mag 53:239–244

    Google Scholar 

  • Seyama H, Soma M (1985) Bonding-state characterization of the constituent elements of silicate minerals by x-ray photoelectron spectroscopy. J Chem Soc, Faraday Trans I 81:485–495

    Google Scholar 

  • Seyama H, Soma M (1987) Application of x-ray photoelectron spectroscopy to the study of silicate minerals. Research Report from the National Institute for Environmental Studies, Japan, No 111

  • Sherriff BL, Grundy HD (1988) Calculation of 29Si MAS NMR chemical shift from silicate mineral structure. Nature 332:819–822

    Google Scholar 

  • Sherriff BL, Grundy HD, Hartman JS (1991) The relationship between 29Si MAS NMR chemical shift and silicate mineral structure. Eur J Mineral 3:751–768

    Google Scholar 

  • Smith KA, Kirkpatrick RJ, Oldfield E, Henderson DM (1983) High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. Am Mineral 68:1206–1215

    Google Scholar 

  • Tossell JA (1973) Molecular orbital interpretation of x-ray emission and ESCA spectral shifts in silicates. J Phys Chem Solids 34:307–319

    Google Scholar 

  • Tossell JA (1975) The electronic structures of silicon, aluminum, and magnesium in tetrahedral coordination with oxygen from 121–02 calculation. J Am Chem Soc 97:4840–4844

    Google Scholar 

  • Tossell JA, Gibbs GV (1977) Molecular orbital studies of geometries and spectral of minerals and inorganic compounds. Phys Chem Minerals 2:21–57

    Google Scholar 

  • Urch DS, Murphy S (1974) The relationship between bond distance and orbital ionisation energies for a series of aluminosilicates. J Electron Spectrosc Relat Phenom 5:167–171

    Google Scholar 

  • Urch DS (1989) Bonding in minerals: the application of PAX (Photoelectron and x-ray) spectroscopy to the direct determination of electronic structure. Mineral Mag 53:153–164

    Google Scholar 

  • Wagner CD, Six HA, Jansen WT, Taylor JA (1981) Improving the accuracy of determination of line energies by ESCA: chemical state plots for silicon-aluminum compounds. Appl Surf Sci 9:203–213

    Google Scholar 

  • Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA (1982) Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds. J Vac Sci Tech 21:933–944

    Google Scholar 

  • Weiss CA, Altaner SP, Kirkpatrick RJ (1987) High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: correlation among chemical shift, structure distortion, and chemical variations. Am Mineral 72:935–942

    Google Scholar 

  • West RH, Castle JE (1982) The correlation of the Auger parameter with refractive index: an XPS study of silicates using Zr 122–03 radiation. Surf Interf Anal 4:68–75

    Google Scholar 

  • Wiech G, Kurmaev EZ (1985) X-ray emission bands and electronic structure of crystalline and vitreous silica (SiO2). J Phys C, Solid State Phys 18:4393–3302

    Google Scholar 

  • Yang BX, Middleton FH, Olssom BG, Bancroft GM, Chen JM, Sham TK, Tan KH, Wallace DJ (1992) Double-crystal monochromator beamline on the Aladdin 1-GeV storage ring. Rev Sci Instrum 63:1355–1358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Bancroft, G.M., Fleet, M.E. et al. Silicon K-edge XANES spectra of silicate minerals. Phys Chem Minerals 22, 115–122 (1995). https://doi.org/10.1007/BF00202471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202471

Keywords

Navigation