Skip to main content
Log in

Local versus average structure around cations in minerals from spectroscopic and diffraction measurements

  • Original Paper/Topic 2
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The average structure determined from diffraction data often differs from the local information gained from spectroscopic methods. Three kinds of examples are illustrated in this paper. Binary solid solutions show that Vegard law is not observed at the atomic scale due to relaxation processes during atomic substitution. The non-random intracrystalline distribution of transition elements, which cannot be obtained from diffraction, has been recently evidenced in various minerals. Intersite distribution of trace elements may also be obtained from spectroscopic methods, and the development of spatially-resolved approaches such as cathodoluminescence opens the possibility of studying zoned minerals. Such progresses give a more accurate description of the actual structure of minerals corresponding to specific conditions of formation and evolution of these phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angus JC, Berveridge B, Raynor BJ (1984) Dolomite thermometry by electron spin resonance (ESR). Chem Geol 43:331–346

    Google Scholar 

  • Annersten H, Ericsson T, Filippidis A (1982) Cation ordering in Ni-Fe olivines. Am Mineral 67:1212–1217

    Google Scholar 

  • Annersten H, Adetunji J, Filippidis A (1984) Cation ordering in Fe-Mn silicate olivines. Am Mineral 69:1110–1115

    Google Scholar 

  • Antonioli G, Bini S, Lottici PP, Razetti C (1986) The local structure in the mixed chalcopyrite CuGaxIn1-xSe2. J Phys C8–12 47:431–434

    Google Scholar 

  • Bish DL (1981) Cation ordering in synthetic and natural Ni-Mg olivines. Am Mineral 66:770–776

    Google Scholar 

  • Boland JN, Duba AG (1986) An electron microprobe study of the stability field and degree of nonstoichiometry in olivine. J Geophys Res 91 (B 5):4711–4722

    Google Scholar 

  • Böstrom D (1987) Single crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. Am Mineral 72:965–972

    Google Scholar 

  • Brown GE Jr (1982) Olivines and silicate spinels. In: Mineralogical Society of America Reviews in Mineralogy 5:275–381

    Google Scholar 

  • Burns RG (1993) Mineralogical application of crystal field theory (2nd edition) 551 p Cambridge University Press, Cambridge

    Google Scholar 

  • De Biasi RS, Fernandez AAR (1983) The ESR linewidth of dilute solid solutions. J Phys C 16(28):5481–5489

    Google Scholar 

  • De Biasi RS, Rodrigues DCS (1981) Influence of chromium concentration and particle size on the ESR linewidth of Al2O3:Cr3+ powders. J Mater Science 16:968–972

    Google Scholar 

  • Decarreau A (1983) Etude expérimentale de la cristallogénèse des smectites. Mesure des coefficients de partage smectitie-solution aqueuses pour les métaux M2+ de la premiè série de transition. Sci Géol Mém 74, 185 pp

  • Decarreau A, Grauby O, Petit S (1992) The actual distribution of octahedral cations in 2∶1 clay minerals: results from clay synthesis. Appl Clay Sci 7:147–167

    Google Scholar 

  • El Ali A (1989) Etude de roches carbonatées de réservoirs d'hy-drocarbures par résonance paramagnétique électronique et cathodoluminescence. PhD, Paris VII University, France

    Google Scholar 

  • El Ali A, Barbin V, Calas G, Cervelle B, Ramseyer K, Bouroulec J (1993) Mn2+-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104:189–202

    Google Scholar 

  • Emura S, Maeda H, Kuroda Y, Murata T (1993) Coordination of Cr3+ ion in α-Al2O3. Jpn J Appl Phys 32–2:734–736

    Google Scholar 

  • Folk RL, Land LS (1975) Mg/Ca ratio and salinity: two controls over the crystallization of dolomite. Amer Assoc Petrol Geol Bull 59:29–40

    Google Scholar 

  • Galoisy L, Calas G (1993) Inhomogeneous distribution of Cr impurities in α-Al2O3 during refractory aging. J Mater Res 8(5):1153–1157

    Google Scholar 

  • Galoisy L, Calas G, Brown GE Jr (1995) Intracrystalline distribution of Ni in San Carlos olivine: an EXAFS Study. Am Mineral 80:1089–1092

    Google Scholar 

  • Gaskell PH, Zhao J, Calas G, Galoisy L (1992) The structure of mixed cation oxide glasses. In: The physics of non crystalline solids. Pye DL, LaCourse WC, Stevens HJ (Ed) Taylor and Francis 53–58

  • Graham J (1960) Lattice spacings and colour in the system alumina-chromic oxide. J Phys Chem Solids 17(1/2):18–25

    Google Scholar 

  • Grant WJC, Strandberg MWP (1964) Line shapes of paramagnetic resonances of chromium in ruby. Phys Rev 135 (3A):727–739

    Google Scholar 

  • Happo N, Sato H, Mihara T, Mimura K, Hosokawa S, Ueda Y, Taniguchi M (1995) Mn and Te K-edge EXAFS studies of Zn1-xMnxTe. Physica B 208–209:291–292

    Google Scholar 

  • Hawthorne FC (1988) Spectroscopic methods in mineralogy and geology. Ribbe PH (Ed) Mineralogical Society of America. Reviews in Mineralogy 18–698 p

  • Illing LV, Wells AJ, Taylor JCM (1965) Penecontemporary dolomite in the Persian gulf. In: In dolomitization and limestone diagenesis: a symposium — Society of Economic Geologists and Paleontologists. Spec Pub (eds Pray LC, Murray RC) 13:89–111

  • Levelut C, Ramos A, Petiau J (1991) EXAFS study of the local structure in CdSxSe1-x compounds. Mater Science Ing B8:251–263

    Google Scholar 

  • Lloyd RV, Lumsden DN, Gregg JM (1985) Relationship between paleotemperatures of metamorphic dolomites and ESR determined Mn (II) partitioning ratios. Geochim Cosmochim Acta 49:2565–2568

    Google Scholar 

  • Loreau JP, Cros P (1988) Limestone diagenesis and dolomitization of Tithonian carbonates at ODP site 639 (Atlantic Ocean, West Spain). In: Boillot G, Winterer EL (Ed), proceedings of the Ocean Drilling Program, Scientif Results 103:105–143

  • Lumsdsen DN, Chimahusky JG (1980) Relation between dolomite non-stoichiometry and carbonate facies parameters. In: Zenger DH, Dunham JB, Ethington RL (Ed) concepts and models of dolomitization. Soc Econ Paleont Mineral Spec Pub 28:123–139

  • Lumdsen DN, Lloyd RV (1984) Mn (II) partitioning between calcium and magnesium sites in studies of dolomite origin. Geochim Cosmochim Acta 48:1861–1865

    Google Scholar 

  • Lumdsen DN, Shipe LG, Lloyd RV (1989) Mineralogy and Mn geochemistry of laboratory-synthesized dolomite. Geochim Cosmochim Acta 53:2325–2329

    Google Scholar 

  • Machel HG, Burton EA (1991) Factors governing cathodoluminescence in calcite and dolomite and their implications for studies of carbonate genesis. In: Barker CE, Kopp OC (Ed) Luminescence Microscopy: quantitative and qualitative aspects. Soc Econ Paleont Mineral, Short course notes 25:37–57

  • McClure DS (1963) Comparison of the crystal fields and optical spectra of Cr2O3 and ruby. J Chem Phys 38:2284–2294

    Google Scholar 

  • Manceau A (1990) Distribution of cations among the octahedra of phyllosilicates: insight from EXAFS. Can Mineral 28:321–328

    Google Scholar 

  • Manceau A, Calas G (1986) Nickel bearing clay minerals II. Intracrystalline distribution of nickel: An X-ray absorption study. Clay Minerals 21:341–360

    Google Scholar 

  • Manceau A, Ildefonse P, Hazemann JL, Flank AM, Gallup D (1995) Crystal chemistry of hydrous iron silicate scale deposits at the Salton Sea geothermal field. Clays Clays Minerals 43 (3):304–317

    Google Scholar 

  • Manenkov AA, Prokhorov AM (1955) The fine structure of the paramagnetic resonance of the ion Cr3+ in chromium corundum. Sov Phys — JETP 1 (3):611

    Google Scholar 

  • Marbeuf A, Karouta F, Dexpert H, Lagarde P, Joullié A (1989) EXAFS study of a quite relaxed zinc-blende lattice: The GaAsySb1-y alloy. J Phys C8–12 47:369–373

    Google Scholar 

  • Marfunin AS (1979) Physics of minerals and inorganic materials. Springer-Verlag 335 p

  • Martins JL, Zunger A (1984) Bond lengths around isovalent impurities and semiconductor solid solutions. Phys Rev B 30(10):6217–6220

    Google Scholar 

  • Medlin WL (1961) Thermoluminescence in dolomite. J Chem Phys 34:672–677

    Google Scholar 

  • Mikkelsen JC, Boyce JB (1983) Extended X-ray absorption fine structure study of Ga1-xInxAs random solid solutions. Phys Rev B 28 (12):7130–7140

    Google Scholar 

  • Miller ML, Ribbe PH (1985) Methods for determination of composition and intracrystalline cation distribution in Fe-Mn and Fe-Ni silicate olivines. Am Mineral 70:723–728

    Google Scholar 

  • Mondésir H (1987) Le système Ni-Mg-Si-H2O entre 25 et 250 °C: mesure des coefficients de partage solide/solution pour le couple Ni/Mg. Cristallochimie et stabilité deslizardites, talcs, kérolites et stévensites de synthèse. PhD, Paris XI University, France 171 p

    Google Scholar 

  • Newton RC, Wood BJ (1980) Volume behavior of silicate solid solutions. Am Mineral 65:733–745

    Google Scholar 

  • Pauling L (1967) The nature of chemical bond. Cornell University Press, Ithaca NY

    Google Scholar 

  • Poole CP (1964) The optical spectra and color of chromium containing solids. J Phys Chem Solids 25:1169–1182

    Google Scholar 

  • Rajamani V, Brown GE Jr, Prewitt CT (1975) Cation ordering in Ni-Mg olivine. Am Mineral 60:292–299

    Google Scholar 

  • Reeder RJ, Prosky JL (1986) Compositional sector zoning in dolomite. J Sediment Petrol 56:237–247

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Google Scholar 

  • Shinn EA, Ginsburg RN, Lloyd RM (1965) Recent supratidaldolomite from Andros Islands, Bahamas. In: Dolomitization and limestone diagenesis: a symposium — Society of Economic Geologists and Paleontologists. Spec Pub (eds Pray LC, Murray RC) 13:112–113

  • Smyth JR, Tafto J (1982) Major and minor element site occupancies in heated natural forsterite. Geophys Res Lett 9 (9):1113–1116

    Google Scholar 

  • Sommer SE (1972) Cathodoluminescence of carbonates 1. Characterization of Cathodoluminescence from carbonate solid solutions. Chem Geol 9:257–273

    Google Scholar 

  • Urusov (1992) A geometric model of deviations from Vegard's rule. J Solid State Chem 98:223–236

    Google Scholar 

  • Van Veen G (1978) Simulation and analysis of EPR spectra of paramagnetic ions in powders. J Mag Reson 30(1):91–109

    Google Scholar 

  • Walker G, Abumere OE, Kamaluddin B (1989) Luminescence spectroscopy of Mn2+ centres in rock-forming carbonates. Mineral Mag 53:201–211

    Google Scholar 

  • Walsh D, Donnay G, Donnay JDH (1976) Ordering of transition metal ion in olivine. Can Mineral 14:149–150

    Google Scholar 

  • Waychunas GA, Dollase WA, Ross CR (1986) Determination of short range order (SRO) parameters from EXAFS pair distribution functions of oxide and silicate solid solutions. J Phys C8–12 47:845–848

    Google Scholar 

  • West AR (1984) Solid state chemistry and its applications. John Wiley and Sons, 734 p

  • Wildeman TR (1970) The distribution of Mn2+ in some carbonate by electron paramagnetic resonance. Chem Geol 5:167–177

    Google Scholar 

  • Wilkins RWT, Ito J (1967) Infrared spectra of some synthetic talcs. Am Mineral 52:1649–1660

    Google Scholar 

  • Zenger DH, Dunham JB (1980) Concepts and models of dolomitization — An introduction. In: Concept and models of dolomitization. Soc Econ Paleont Mineral Spec Pub (Zenger DH et al., ed) 28:1–9

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoisy, L. Local versus average structure around cations in minerals from spectroscopic and diffraction measurements. Phys Chem Minerals 23, 217–225 (1996). https://doi.org/10.1007/BF00207748

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207748

Keywords

Navigation