Skip to main content
Log in

The system Ag-Sb-S from 600°C to 200°C

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The system Ag-Sb-S was studied between 600°C and 200°C in evacuated silica glass tubes. Results from lower temperature runs require shifts in the stable tie-line configuration found by Barstad at 400°C. It is proposed that the configuration changes near 300°C, and that at 200°C the equilibrium assemblages correspond to those usually reported for minerals in ores. Most of the minerals of the system were synthesized. In addition, the synthetic phase Ag7SbS6 (antimony analogue of the arsenic mineral billingsleyite) is characterized, and the ease of its synthesis in the composition area bounded by argentite-pyrargyrite-sulfur suggests the probable existence of a mineral of this composition. The relatively common mineral stephanite (Ag5SbS4) was not formed as a synthetic product in the temperature range of this study. Combined DTA and X-ray data show that at 197±5°C stephanite decomposes in the absence of sulfur to form pyrargyrite plus argentite, whereas with excess sulfur the products are Sb-billingsleyite plus pyrargyrite. Pyrostilpnite (Ag3SbS3), the low temperature dimorph of pyrargyrite, is unstable above 192±5°C.

Abstract

Das ternäre System Silber-Antimon-Schwefel wurde zwischen 600° und 200°C untersucht und versucht, die Gleichgewichtszustände aller stabilen Phasen zu analogen natürlichen Mineralien in Beziehung zu setzen. Neben den Elementen wurden an binären Phasen Allargentum, Dyskrasit, Antimonit, Argentit bzw. Akanthit gefunden oder bestätigt. Auf dem pseudo-binären Schnitt Ag2S-Sb2S3 liegen Pyrargyrit und Miargyrit, während eine als Mineral unbekannte ternäre Phase Ag7SbS6 (entsprechend dem natürlichen As-Analogon Billingsleyit) nur bei höherem Schwefelangebot beständig ist. Hier nicht synthetisch dargestellte Silber-Antimon-Sulfosalze liegen vermutlich unterhalb der 200°C-Grenze. So ließ sich mittels Differential-Thermo-Analyse und röntgenographischer Bestimmungsmethoden der inkongruente Zerfall von Stephanit in Argentit und Pyrargyrit bei 197±5°C bestimmen. Pyrostilpnit (Ag3SbS3) ist nur unterhalb 192±5°C beständig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfeld, F.: Los Yacimientos Minerales de Bolivia, 282 p. La Paz: Direccion General de Minas 1941.

    Google Scholar 

  • Barstad, J.: Phase relations in the system Ag-Sb-S at 400° C. Acta Chem. Scand. 13, 1703–1708 (1959).

    Google Scholar 

  • Bastin, E. S.: The Interpretation of Ore Textures, 101 p. Geol. Soc. Am., Memoir 45. New York: Geol. Soc. Am. 1950.

    Google Scholar 

  • Bell, P. M., J. L. England, and G. Kullerud: High pressure differential thermal analysis. An. Rept. Geophys. Lab. 1965–1966, 354–356 (1967).

  • Birks, N., H. Rickert, u. C. Wagner: Berechnung von Metall-Schlacken-Gleichgewichten sowie Gleichgewichten zwischen binären flüssigen oder festen Legierungen und festen Oxyden oder Sulfiden mit einer Anwendung auf das System Ag-Sb-S. Z. Elektrochem. 66, 266–269 (1962).

    Google Scholar 

  • Brett, R.: Kinetics of exsolution in two sulfide systems (Abs.). Program Annual Meeting, Geol. Soc. America, Miami Beach, p. 18–19 (1964).

  • — Experimental data from the system Cu-Fe-S and their bearing on exsolution testures in ores. Econ. Geol. 59, 1241–1269 (1964).

    Google Scholar 

  • Broderick, S. J., and W. F. Ehret: An X-ray study of the alloys of silver with bismuth, antimony and arsenic: Part I. J. Phys. Chem. 35, 2627–2636 (1931).

    Google Scholar 

  • Chace, F. M.: Abbreviations in field and mine geological mapping. Econ. Geol. 51, 712–723 (1956).

    Google Scholar 

  • Chang, L. Li-Yu: Dimorphic relations in Ag3SbS3. Am. Mineralogist 48, 429–432 (1963).

    Google Scholar 

  • Cooper, A. S., W. L. Bond, and S. C. Abrahams: The lattice and molecular constants of orthorhombic sulfur. Acta Cryst. 14, 1008 (1961).

    Google Scholar 

  • Djurle, S.: An X-ray study of the system Ag-Cu-S. Acta Chem. Scand. 12, 1427–1436 (1958).

    Google Scholar 

  • Doelter, C., u. H. Leitmeier: Handbuch der Mineralchemie, 41, p. 234, 267. Dresden-Leipzig: Theodor Steinkopff 1926.

    Google Scholar 

  • Donnay, J. D. H., and W. Nowacki: Crystal Data. Geol. Soc. Am., Memoir 60, 205 (1954).

    Google Scholar 

  • Edwards, A. B.: Textures of the Ore Minerals, 242 p. Melbourne: Australasian Inst. Mining Met. 1954.

    Google Scholar 

  • Frost, B. R. T., and G. V. Raynor: The system silver-magnesium-antimony, with reference to the theory of alloy formation. Proc. Roy. Soc. (London) A-203, 134–135 (1950).

    CAS  PubMed  Google Scholar 

  • Frueh, A. J., Jr.: The crystal structure, polymorphism and twinning of acanthite, Ag2S. Acta Cryst. 10, 764 (1957).

    Google Scholar 

  • Gaudin, A. M., and D. W. McGlashan: Sulphide silver minerals — a contribution to their pyrosynthesis and to their identification by selective irridescent filming. Econ. Geol. 33, 143–193 (1938).

    Google Scholar 

  • Hall, H. T., and R. A. Yund: Equilibrium relations among some silver sulfosalts and arsenic sulphides. Trans. Am. Geophys. Union 45, 122 (1964).

    Google Scholar 

  • Hansen, M., and K. Anderko: Constitution of Binary Alloys, 2nd Ed., 1305 p. New York: McGraw-Hill 1958.

    Google Scholar 

  • Honea, R. M., and C. Frondel: Billingsleyite, a new silver sulfosalt. Am. Mineralogist 53, 1791–1798 (1968).

    Google Scholar 

  • Hume-Rothery, W., P. W. Reynolds, and G. V. Raynor: Factors affecting the formation of 3/2 electron compounds in alloys of copper, silver and gold. J. Inst. Metals 66, 191–207 (1940).

    Google Scholar 

  • Indolev, L. N.: Owyheeite from deposits of the South Verkhoyansk region. Dokl. Akad. Nauk SSSR 154, 122–124 (1964).

    Google Scholar 

  • Jensen, E.: The system silver sulfide-antimony trisulfide, A thermal study. Avhandl. Norske Videnskaps-Akad. Oslo, I. Mat. Naturv. Klasse, No. 2, 23 p. (1947).

  • Kiukkola, K., and C. Wagner: Measurements on galvanic cells involving solid electrolytes. J. Electrochem. Soc. 104, 379–387 (1957).

    Google Scholar 

  • Kracek, F. C.: Phase relations in the system sulfursilver and the transitions in silver sulfide. Trans. Am. Geophys. Union 27, 364–374 (1946).

    Google Scholar 

  • Kullerud, G.: Sulfide studies. In: Researches in Geochemistry, Vol. 2. p. 287. Edited by P. H. Abelsoneds. New York-London-Sydney: John Wiley and Sons 1967.

    Google Scholar 

  • Markham, N. L., and L. J. Lawrence: Primary ore minerals of the Consuls Lode, Broken Hill, New South Wales. Proc. Australasian Inst. Mining Met. 201, 43–80 (1962).

    Google Scholar 

  • McLean, D.: The science of metamorphism in metals. In: Controls of Metamorphism, pp. 103–118. Edited by W. S. Pitcher and G. W. Flinneds. New York: John Wiley and Sons 1965.

    Google Scholar 

  • Nowacki, W.: Zur Kristallchemie der Sulfosalze, insbesondere aus dem Lengenbach (Binnatal, Kt. Wallis). Schweiz. Mineral. Petrog. Mitt. 44, 459–484 (1964).

    Google Scholar 

  • Owen, E. A., and E. W. Roberts: Factors affecting the limit of solubility of elements in copper and silver. Phil. Mag., Ser. 7, 294–327 (1939).

    Google Scholar 

  • Peacock, M. A.: On dyscrasite and antimonial silver. Univ. Toronto Studies, Geol. Ser. 44, 31–46 (1940).

    Google Scholar 

  • Ramdohr, P.: Die Erzmineralien und ihre Verwachsungen 3rd Ed. p. 312, Berlin: Akadamie Verlag 1960.

    Google Scholar 

  • Reynolds, P. W., and W. Hume-Rothery: The constitution of silver-rich antimony-silver alloys. J. Inst. Metals 60, 365–374 (1937).

    Google Scholar 

  • Rickert, M., and C. Wagner: Festkörperreaktionen im System Silber-Antimon-Schwefel. Z. Elektrochem. B64, 793–800 (1960).

    Google Scholar 

  • Roland, G. W.: Phase relations in the Ag-As-S system (Abs.). Program Ann. Meeting, Geol. Soc. America, p. 138 (1965).

  • Rosenqvist, T.: A thermodynamic investigation of the system silver-silver sulphide. J. Metals, Trans. 185, 451–460 (1949).

    Google Scholar 

  • Ross, V.: The formation of intermediate sulfide phases in the solid state. Econ. Geol. 49, 734–752 (1954).

    Google Scholar 

  • Roy, R., A. J. Majumdar, and C. W. Hulbe: The Ag2S and Ag2Se transitions as geologic thermometers. Econ. Geol. 54, 1278–1280 (1959).

    Google Scholar 

  • Sandor, J. E.: Surface reactions of silver and its ions. Dept. Mines and Tech. Surveys, Mines Branch Research Report R 62, 22 p., 1960.

  • Schouten, C.: Structures and textures of synthetic replacements in “open space”. Econ. Geol. 29, 611–658 (1934).

    Google Scholar 

  • Schwartz, G. M.: Dyscrasite and the silver-antimony constitution diagram. Am. Mineralogist 13, 495–503 (1928).

    Google Scholar 

  • Somanchi, S.: Subsolidus phase relations in the systems Ag-Sb and Ag-Sb-S. Unpub. M. S. thesis, 52 p. McGill Univ., Dept. Geol. Sci. 1963.

  • — Subsolidus phase relations in the system Ag-Sb. Can. J. Earth Sci. 3, 211–222 (1966).

    Google Scholar 

  • —, and L. A. Clark: The occurrence of an Ag6Sb phase at Cobalt, Ontario. Can. Min. 8, 610–619 (1966).

    Google Scholar 

  • Swanson, H. E., and E. Tatge: Standard X-ray diffraction powder patterns. Natl. Bur. Std. (U. S.), Circ. 539, 1, 23–24 (1953).

    Google Scholar 

  • —, R. K. Fuvat, and G. M. Ugrinic: Standard X-ray diffraction powder patterns. Natl. Bur. Std. (U.S.), Circ. 539, 3, 14–15 (1954).

    Google Scholar 

  • —, Gilfrich and G. M. Ugrinic: Standard X-ray diffraction powder patterns. Natl. Bur. Std. (U.S.), Circ. 539, 5, (1955).

    Google Scholar 

  • Toulmin, P., III.: Proustite-pyrargyrite solid solutions. Am. Mineralogist 48, 725–736 (1963).

    Google Scholar 

  • Uytenbogaardt, W.: Tables for Microscopic Determination of Ore Minerals, 242 p., Princeton: Princeton University Press 1951.

    Google Scholar 

  • Verduch, A. G., and C. Wagner: Contributions to the thermodynamics of the system PbS-Sb2S3, Cu2S-Sb2S3, Ag2S-Sb2S3 and Ag-Sb. J. Phys. Chem. 61, 558–562 (1957).

    Google Scholar 

  • Wagner, C.: Investigations on silver sulfide. J. Phys. Chem. 21, 1819–1827 (1953).

    Google Scholar 

  • Weibke, F., u. I. Efinger: Der Aufbau der Legierungen des Systems Silber-Antimon. Z. Elektrochem. B46, 53–60 (1940).

    Google Scholar 

  • Weil, R., et R. Hocart: Recherches experiméntales sur la formation des minerals d'argent. Compt. Rend. Congr. Soc. Savantes, Toulouse, Sect. Sci., 183–188 (1953).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keighin, C.W., Honea, R.M. The system Ag-Sb-S from 600°C to 200°C. Mineral. Deposita 4, 153–171 (1969). https://doi.org/10.1007/BF00208050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208050

Keywords

Navigation