Skip to main content
Log in

Amphibian sympathetic ganglia in tissue culture

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

  1. 1.

    A culture medium has been developed for amphibian sympathetic nervous tissue but it is suggested that the ionic values should be adjusted to correspond to the concentrations of salts in the plasma of particular species.

  2. 2.

    The morphology, monoamine fluorescence, growth and differentiation of sympathetic ganglia of the frog, Limnodynastes dumerili, have been studied in culture.

  3. 3.

    Two types of neuron could be distinguished largely according to size, namely small, 18×20 μm and large, 38×42 μm. The possibility that these represent one type at different stages in development or represent functionally distinct neurons is discussed.

  4. 4.

    The sympathetic neurons are extremely sensitive to nerve growth factor (NGF) which caused an increase in the size of the cell bodies, the number of nerve fibres regenerating, the rate of axonal growth and synthesis of catecholamines.

  5. 5.

    Various other cell types appearing in the cultures have been described, including chromaffin, satellite, Schwann, multipolar and epithelial cells as well as fibroblasts, melanocytes and macrophages. The epithelial cells show slow contractions and changes in shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auclair, W.: Cultivation of monolayer cultures of frog renal cells. Nature (Lond.) 192, 467–468 (1961)

    Google Scholar 

  • Azuma, K., Binia, A., Visscher, M. B.: Adrenergic mechanisms in the bullfrog and turtle. Amer. J. Physiol. 209, 1287–1294 (1965)

    Google Scholar 

  • Balls, M., Ruben, L. N.: Cultivation in vitro of normal and neoplastic cells of Xenopus laevis. Exp. Cell Res. 43, 694–695 (1966)

    Google Scholar 

  • Barth, L. G., Barth, L. J.: Differentiation of cells of the Rana pipiens gastrula in unconditioned medium. J. Embryol. exp. Morph. 7, 210–222 (1959)

    Google Scholar 

  • Bishop, G. H., O'Leary, J.: Pathways through the sympathetic nervous system in the bullfrog. J. Neurophysiol. 1, 442–454 (1938)

    Google Scholar 

  • Black, I. B., Geen, S. C.: Inhibition of the biochemical and morphological maturation of adrenergic neurons by nicotinic blockade. J. Neurochem. 22, 301–306 (1974)

    Google Scholar 

  • Blood, L. A.: Some quantitative effects of nerve growth factor on dorsal root ganglia of chick embryos in culture. J. Anat. (Lond.) 112, 315–328 (1972)

    Google Scholar 

  • Botár, J.: The Autonomic Nervous System. An Introduction to its Physiological and Pathological Histology. Budapest: Akadémiai Kiadó 1966

    Google Scholar 

  • Brzin, M., Tennyson, V. M., Duffy, P. E.: Acetylcholinesterase in frog sympathetic and dorsal root ganglia, J. Cell Biol. 31, 215–242 (1966)

    Google Scholar 

  • Bunge, M. B.: Fine structure of nerve fibres and growth cones of isolated sympathetic neurons in culture. J. Cell Biol. 56, 713–735 (1973)

    Google Scholar 

  • Burnham, P., Raiborn, C., Varon, S.: Replacement of nerve-growth factor by ganglionic non-neuronal cells for the survival in vitro of dissociated ganglionic neurons. Proc. nat. Acad. Sci. (Wash.) 69, 3556–3560 (1972)

    Google Scholar 

  • Burnstock, G., Iwayama, T.: Fine-structural identification of autonomic nerves and their relation to smooth muscle. In: Progress in Brain Research (ed. Eränkö, O.), vol. 34, p. 389–404. Histochemistry of Nervous Transmission. Amsterdam-London-New York: Elsevier 1971

    Google Scholar 

  • Chamley, J. H.: Autonomic neurons and their effector organs in tissue culture. Ph.D. thesis. University of Melbourne 1973

  • Chamley, J. H., Mark, G. E., Burnstock, G.: Sympathetic ganglia in culture. II. Accessory cells. Z. Zellforsch 135, 315–327 (1972b)

    Google Scholar 

  • Chamley, J. H., Mark, G. E., Campbell, G. R., Burnstock, G.: Sympathetic ganglia in culture. I. Neurons. Z. Zellforsch. 135, 287–314 (1972a)

    Google Scholar 

  • Claude, P.: Electron microscopy of dissociated rat sympathetic neurons in vitro. J. Cell Biol. 59, 57a (1973)

  • Dahlström, A.: Axoplasmic transport (with particular respect to adrenergic neurons). Phil. Trans. B. 261, 325–358 (1971)

    Google Scholar 

  • Eagle, H.: Nutrition needs of mammalian cells in tissue culture. Science 122, 501–504 (1955)

    Google Scholar 

  • Eagle, H.: Amino acid metabolism in mammalian cell cultures. Science 130, 432–437 (1959)

    Google Scholar 

  • Ernyei, S., Young, M. R.: Pulsatile and myelin-forming activities of Schwann cells in vitro. J. Physiol. (Lond.) 183, 469–480 (1966)

    Google Scholar 

  • Euler, U. S. von: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenalin. Acta physiol. scand. 12, 73–98 (1946)

    Google Scholar 

  • Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. Suppl. 197, 1–25 (1962)

    Google Scholar 

  • Falck, B., Häggendal, J., Owman, C.: The localization of adrenaline in adrenergic nerves in the frog. Quart. J. exp. Physiol. 48, 253–257 (1963)

    Google Scholar 

  • Fenn, W. O.: Electrolytes in muscle. Physiol. Rev. 16, 450–487 (1936)

    Google Scholar 

  • Freed, J. J., Mezger-Freed, L.: Culture methods for anuran cells. In: Methods in Cell Physiology (ed. Prescott, D. M.), vol. 4, p. 19–47. New York and London: Acad. Press 1970

    Google Scholar 

  • Granoff, A., Came, P. E., Breeze, D. C.: Viruses and renal carcinoma of Rana pipiens. I. The isolation and properties of virus from normal and tumor tissue. Virology 29, 133–148 (1966)

    Google Scholar 

  • Hanks, J. H., Wallace, R. E.: Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. exp. Biol. (N.Y.) 71, 196–200 (1949)

    Google Scholar 

  • Harrison, R. G.: Experiments in transplanting limbs and their bearing upon the problem of the development of nerves. J. exp. Zool. 4, 239–281 (1907)

    Google Scholar 

  • Harrison, R. G.: The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. exp. Zool. 9, 787–846 (1910)

    Google Scholar 

  • Hendry, I. A., Iversen, L. L.: Effect of nerve growth factor and its antiserum on tyrosine hydroxylase activity in mouse superior cervical sympathetic ganglion. Brain Res. 29, 159–162 (1971)

    Google Scholar 

  • Hill, C. E., Hoult, M., Burnstock, G.: Extra-adrenal chromaffin cells grown in tissue culture. Cell Tiss. Res. (in press), (1975)

  • Honma, S.: Functional differentiation in sB and sC neurons of toad sympathetic ganglia. Jap. J. Physiol. 20, 281–295 (1970)

    Google Scholar 

  • Huber, G. C.: A contribution on the minute anatomy of the sympathetic ganglia of the different classes of vertebrates. J. Morph. 16, 27–90 (1900)

    Google Scholar 

  • Iversen, L. L., Hendry, I. A., Mackay, A. V. P.: Assay of nerve growth factor (NGF) in mouse tissues and the role of NGF and depolarizing stimuli in the long term regulation of tyrosine hydroxylase activity in adrenergic neurons. In: Dynamics of Degeneration and Growth in Neurons (Fuxe, K., Olson, L., Zotterman, Y., eds.), p. 329–345. Oxford-Permagon N.Y.: Press 1974

    Google Scholar 

  • Iwayama, T., Furness, J. B.: Enhancement of the granulation of adrenergic storage vesicles in drug-free solution. J. Cell Biol. 48, 699–703 (1971)

    Google Scholar 

  • Jones, K. W., Elsdale, T. R.: The culture of small aggregates of amphibian embryonic cells in vitro. J. Embryol. exp. Morph. 11, 135–154 (1963)

    Google Scholar 

  • Kása, P., Csillik, B.: Electron microscopic localization of cholinesterase by a copper-lead-thiocholine technique. J. Neurochem. 13, 1345–1349 (1966)

    Google Scholar 

  • Levi-Montalcini, R.: The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. The Harvey Lectures, Series 60, p. 217–259. New York: Acad. Press Inc. 1966

    Google Scholar 

  • Levi-Montalcini, R., Angeletti, P. U.: Growth control of the sympathetic system by a specific protein factor. Quart. Rev. Biol. 36, 99–108 (1961a)

    Google Scholar 

  • Levi-Montalcini, R., Angeletti, P. U.: Biological properties of a nerve-growth promoting protein and its antiserum. In: Regional Neurochemistry. Proceedings 4th International Neurochemical Symposium (Kety, S. S., Elkes, J., eds.), p. 362–377. Permagon Press 1961b

  • Levi-Montalcini, R., Angeletti, P. U.: Nerve growth factor. Physiol. Rev. 48, 534–569 (1968)

    Google Scholar 

  • Liuzzi, A., Pocchiari, F., Angeletti, P. U.: Glucose metabolism in embryonic ganglia: effect of nerve growth factor (NGF) and insulin. Brain Res. 7, 452–454 (1968)

    Google Scholar 

  • Mains, R. E., Patterson, P. H.: Primary cultures of dissociated sympathetic neurons. J. Cell. Biol. 59, 329–366 (1973)

    Google Scholar 

  • May, J. F., Paule, W. J.: Age changes in cultured aortic smooth muscle cells. Anat. Rec. 175, 386–387 (1973)

    Google Scholar 

  • Monnickendam, M. A., Balls, M.: Amphibian organ culture. Experientia (Basel) 29, 1–17 (1973)

    Google Scholar 

  • Murray, M. R.: Nervous tissues in vitro. In: Cells and Tissues in Culture. Methods, Biology and Physiology (ed. Willmer, E. N.), vol. 2, p. 373–455. London-New York: Acad. Press 1965

    Google Scholar 

  • Murray, M. R., Stout, A. P.: Adult human sympathetic ganglion cells cultivated in vitro. Amer. J. Anat. 80, 225–273 (1947)

    Google Scholar 

  • Nakai, J.: Transformations and multiplication of neuroglia in tissue culture. Proc. IV Internat. Congr. Neuropathol. München (ed. Jacob, H.), vol. II, p. 241–246. Stuttgart: Georg Thieme 1961

    Google Scholar 

  • Nakai, J., Okamoto, M.: Identification of neuroglial cells in tissue culture. In: Morphology of Neuroglia (ed. Nakai, J.), p. 65–102. Springfield, Ill., U.S.A.: Charles C. Thomas 1963

    Google Scholar 

  • Nakazawa, T.: Biological response of oligodendroeyte and astrocyte in tissue culture. In: Morphology of Neuroglia (ed. Nakai, J.), p. 103–120. Springfield, Ill., U.S.A.: Charles C. Thomas 1963

    Google Scholar 

  • Niu, M. C., Twitty, V. C.: The differentiation of gastrula ectoderm in medium conditioned by axial mesoderm. Proc. nat. Acad. Sci. (Wash.) 39, 985–989 (1953)

    Google Scholar 

  • O'Lague, P. H., Obata, K., Claude, P., Furshpan, E. T., Potter, D. D.: Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc. nat. Acad. Sci. (Wash.) 71, 3602–3606 (1974)

    Google Scholar 

  • Parker, R. C.: Methods of Tissue Culture. 3rd ed. New York: Hoeber Medical Division, Harper and Row 1961

    Google Scholar 

  • Piatigorsky, J., Rothschild, S. S., Wollberg, M.: Stimulation by insulin of cell elongation and microtubule assembly in embryonic chick-lens epithelia. Proc. nat. Acad. Sci. (Wash.) 70, 1195–1198 (1973)

    Google Scholar 

  • Pick, J.: The submicroscopic organization of the sympathetic ganglion in the frog (Ranapipiens). J. comp. Neurol. 120, 409–462 (1963)

    Google Scholar 

  • Pick, J.: The Autonomic Nervous System. Morphological, Comparative, Clinical and Surgical Aspects. Philadelphia-Toronto: J. B. Lippincott Company 1970

    Google Scholar 

  • Piezzi, R. S., Rodriguez Echandia, E. L.: Studies on the pararenal ganglion of the toad Bufo arenarum Hensel. I. Its normal fine structure and histochemical characteristics. Z. Zellforsch. 88, 180–186 (1968)

    Google Scholar 

  • Pomerat, C. M.: Functional concepts based on tissue culture studies of neuroglia cells. In: Biology of Neuroglia (ed. Windle, W. F.), p. 162–175. Springfield, Ill., U.S.A.: C. C. Thomas 1958

    Google Scholar 

  • Prosser, C. L., Brown, F. A.: Comparative Animal Physiology 2nd ed. Philadelphia-London-Toronto: W. B. Saunders Company 1961

    Google Scholar 

  • Richardson, K. C.: Electron microscopic identification of autonomic nerve endings. Nature (Lond.) 210, 756 (1966)

    Google Scholar 

  • Rose, G. G., Pomerat, C. M., Shindler, T. O., Trunnell, J. B. A.: A cellophane-strip technique for culturing tissue in multipurpose chambers. J. biophys. biochem. Cytol. 4, 761–764 (1958)

    Google Scholar 

  • Salk, J. E., Younger, J. S., Ward, E. N.: Use of colour change of phenol red as the indicator in titrating poliomyelitis virus or its antibody in a tissue culture system. Appendix. Method of preparing medium 199. Amer. J. Hyg. 60, 214–230 (1954)

    Google Scholar 

  • Shanthaveerappa, T. R., Bourne, G. H.: The perineural epithelium of sympathetic nerves and ganglia and its relation to the pia arachnoid of the central nervous system and perineural epithelium of the peripheral nervous system. Z. Zellforsch. 61, 742–753 (1964)

    Google Scholar 

  • Shimada, Y., Fischman, D. A., Moscona, A. A.: The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J. Cell Biol. 35, 445–453 (1967)

    Google Scholar 

  • Smith, A. D.: Cellular control of the uptake, storage and release of noradrenaline in sympathetic nerves. Biochem. Soc. Symposium 36, 103–131 (1972)

    Google Scholar 

  • Stephenson, E. M.: Temperature tolerance of cultured amphibian cells in relation to latitudinal distribution of donors. Aust. J. biol. Sci. 21, 741–751 (1968)

    Google Scholar 

  • Stephenson, N. G.: Effects of temperature on reptilian and other cells. J. Embryol. exp. Morph. 16, 455–467 (1966)

    Google Scholar 

  • Taxi, J.: Contribution à l'étude des connexions des neurones moteurs du système nerveux autonome. Ann. Sci. Nat. Zool. Paris. Series 12, vol. 7, 413–674 (1965)

    Google Scholar 

  • Teichberg, S., Holtzman, E.: Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons. J. Cell Biol. 57, 88–108 (1973)

    Google Scholar 

  • Thoenen, H.: Trans-synaptic enzyme induction. Life Sci. 14, 223–235 (1974)

    Google Scholar 

  • Thoenen, H., Angeletti, P. U., Levi-Montalcini, R., Kettler, R.: Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine-β-hydroxylase in the rat superior cervical ganglia. Proc. nat. Acad. Sci. (Wash.) 68, 1598–1602 (1971)

    Google Scholar 

  • Tranzer, J. P., Thoenen, H.: Various types of amine-storing vesicles in peripheral adrenergic nerve terminals. Experientia (Basel) 24, 484–486 (1968)

    Google Scholar 

  • Uchizono, K.: On different types of synaptic vesicles in the sympathetic ganglia of Amphibia. Jap. J. Physiol. 14, 210–219 (1964)

    Google Scholar 

  • Venable, J. M., Coggeshall, R.: A simplified lead citrate stain for use in electronmicroscopy. J. Cell. Biol. 25, 407–408 (1965)

    Google Scholar 

  • Weis, J. S.: The effects of nerve growth factor on the spinal ganglia of Ambystoma maculatum. J. exp. Zool. 170, 481–488 (1969)

    Google Scholar 

  • Weis, J. S.: The effects of nerve growth factor antiserum on Ambystoma. Experientia (Basel) 26, 155–156 (1970)

    Google Scholar 

  • Weis, J. S.: The effects of nerve growth factor on bullfrog tadpoles (Rana catesbeiana) after limb amputation. J. exp. Zool. 180, 385–392 (1972)

    Google Scholar 

  • Wolf, K., Quimby, M. C.: Amphibian cell culture: permanent cell line from the bullfrog (Rana catesbeiana). Science 144, 1578–1580 (1964)

    Google Scholar 

  • Wolf, M. K.: Differentiation of neuronal types and synapses in myelinating cultures of mouse cerebellum. J. Cell Biol. 22, 259–279 (1964)

    Google Scholar 

  • Ziegler, B., Lippman, H. G.: Zur Charakterisierung von Wachstum, Glukoseverbrauch und Laktatproduktion kultivierter pulsierender Rattenherzzellen nach Insulingabe. Acta biol. med. germ. 26, 277–288 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, C.E., Burnstock, G. Amphibian sympathetic ganglia in tissue culture. Cell Tissue Res. 162, 209–233 (1975). https://doi.org/10.1007/BF00209208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209208

Key words

Navigation