Skip to main content
Log in

Dielectric constants of BeO, MgO, and CaO using the two-terminal method

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Using fused SiO2, CaF2, and SrF2 samples with accurately known dielectric constants, we have evaluated the accuracy and precision of two-terminal dielectric constant measurements on small single crystals using empirically determined edge corrections. Values of κ′ at 1 MHz of 3.836±0.05 for silica, 6.814±0.07 for CaF2 and 6.463±0.09 for SrF2 indicate an accuracy and precision of 1.0–1.5% for samples having areas of 0.05–1.0 cm2. Dielectric constants of BeO, MgO, and CaO measured by this technique are: BeO, κ′a=6.87 and κ′c=7.74; MgO, κ′= 9.90; and CaO, κ′=11.95 where κ′a and κ′c are the dielectric constants parallel to the a and c axes, respectively. Dielectric loss measurements on CaO in vacuum between 5–400 K at 10–105 Hz indicate significant dispersion at temperatures higher than 300 K, but the effect of the losses on the dielectric constant is less than 1% at 1 MHz and 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham MM, Butler CT, Chen Y (1971) Growth of high-purity and doped alkaline-earth oxides: I. MgO and CaO. J Chem Phys 55:3752–3756

    Google Scholar 

  • ASTM (1981) Standard Test Methods for A-C loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials, D150–81, American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  • Andeen C, Fontanella J (1977) The dielectric spectrum of europium doped CaF2. J Phys Chem Solids 38:237–241

    Google Scholar 

  • Andeen C, Fontanella J, Schuele D (1970) Accurate determination of the dielectric constant by the method of substitution. Rev Sci Instrum 41:1573–1576

    Article  Google Scholar 

  • Andeen C, Fontanella J, Schuele D (1971) Low-frequency dielectric constants of the alkaline earth fluorides by the method of substitution. J Appl Phys 42:2216–2219

    Article  Google Scholar 

  • Andeen C, Schuele D, Fontanella J (1974) Effect of OH on the low-frequency dielectric constant of vitreous silica. J Appl Phys 45:1071–1074

    Article  Google Scholar 

  • Andeen CG, Fontanella JJ, Wintersgill MC, Welcher PJ, Kimble RJ, Matthews GE (1981) Clustering in rare-earth-doped alkaline earth fluorides. J Phys C 14:3557–3574

    Article  Google Scholar 

  • Arguelo CA, Rousseau DL, Porto SP (1969) First order Raman effect in wurtzite-type crystals. Phys Rev 181:1351–1363

    Google Scholar 

  • Austerman SB (1963) Polar properties of BeO single crystals. J Appl Phys 34:339–341

    Article  Google Scholar 

  • Bartels RA, Smith PA (1973) Pressure and temperature dependence of the static dielectric constants of KCl, NaCl, LiF and MgO. Phys Rev B7:3885–3891

    Google Scholar 

  • Bartels RA, Koo JC, Thomas ML (1979) The temperature and pressure dependence of the dielectric constants of CaO and SrO. Phys Status Solidi 52A:K213–216

    Google Scholar 

  • Boslough MB, Ahrens TJ (1984) Shock temperatures in CaO. J Geophys Res 89:7845–7851

    Google Scholar 

  • Bosman AJ, Crevecour C (1968) Relaxation losses in CoO doped with Li or Na. J Phys Chem Solids 29:102–113

    Google Scholar 

  • Broadhurst MG, Bur AJ (1965) Two terminal dielectric measurements up to 6 × 108 Hz. J Res NBS 69 C:165–172

    Google Scholar 

  • Bussey HE (1967) Measurement of RF properties of materials — a survey. Proc IEEE 55:1046–1053

    Google Scholar 

  • Bussey HE (1987) Complex permittivity of fused silica. Letter to R.D. Shannon, December 2, 1987

  • Bussey HE, Gray JE, Bamberger EC, Rushton E, Russell G, Petley BW, Morris D (1964) International comparison of dielectric measurements. IEEE Trans. Instrum Measur IM-13:305–311

    Google Scholar 

  • Butler CT, Sturm BJ, Quincy RB (1971) Arc fusion growth and Characterization of high purity MgO crystals. J Cryst Growth 8:197–204

    Article  Google Scholar 

  • Donnay JDH, Ondik HM (1973) Crystal Data-Determinative Tables. Vol. II, Inorganic Compounds. US Dept. of Commerce, National Bureau of Standards, JCPDS

  • Field RF (1954) Errors occurring in the measurement of dielectric constant. Proc ASTEA Am Soc Testing Mats 54:456–478

    Google Scholar 

  • Fontanella J (1987) Unpublished data

  • Fontanella J, Andeen C, Schuele D (1974) Low-frequency dielectric constants of alpha-quartz, sapphire, MgF2 and MgO. J Appl Phys 45:2852–2854

    Article  Google Scholar 

  • Freund F (1987) Hydrogen and carbon in solid solution in oxides and silicates. Phys Chem Minerals 15:1–18

    Article  Google Scholar 

  • Freund F, Wengeler H (1982) The infrared spectrum of OH-compensated defect sites in C-doped MgO and CaO single crystals. J Phys Chem Solids 43:129–145

    Google Scholar 

  • Harris WP, Scott AN (1962) Precise measurement of dielectric constant by the two-fluid method. 1962 Annual Rept., Conference on Electrical Insulation, NRC Publ. 1080, Natl. Academy of Sciences, Washington, D.C., October, pp 51–53

    Google Scholar 

  • Hartshorn L, Ward WH (1936) The measurement of the permittivity and power factor of dielectrics at frequencies from 104 to 108 cycles per second. Proc DIEEA Inst of Electrical Eng (London) 79:597–609

    Google Scholar 

  • Hewlett-Packard (1984) Operating Manual 4275A Multi-Frequency LCR Meter, Yokogawa-Hewlett-Packard Ltd., Tokyo

    Google Scholar 

  • Jacobson JL, Nixon ER (1968) Infrared dielectric response and lattice vibrations of calcium and strontium oxides. J Phys Chem Solids 29:967–976

    Google Scholar 

  • Jeanloz R, Ahrens TJ (1980) Equations of state of FeO and CaO. Geophys J R Astr Soc 62:505–528

    Google Scholar 

  • Kotz J, Freund F, Klatt E (1983) Dielectric behavior or arc-fused MgO. High Temp High Press 15:355–356

    Google Scholar 

  • Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Mineral 67:328–334

    Google Scholar 

  • Loh E (1968) Optical phonons in BeO crystals. Phys Rev 166:673–678

    Article  Google Scholar 

  • Lowndes RP, Martin DH (1969) Dielectric dispersion and structures of ionic lattices. Proc R Soc London A308:473–496

    Google Scholar 

  • Narayana Rao, DAAS (1947) Dielectric constants of crystals, I. Different types of quartz. Proc Ind Acad Sci 25 A:408–412

    Google Scholar 

  • Narayano Rao, DAAS (1949) Dielectric constants of crystals III. Proc Acad Sci 30A:82–86

    Google Scholar 

  • Neeley VI, Kemp JC (1963) Optical absorption in CaO single crystals. J Phys Chem Solids 24:1301–1304

    Google Scholar 

  • Roberts R (1950) A theory of dielectric polarization in alkali halid crystals. Phys Rev 77:258–263

    Google Scholar 

  • Roberts R (1951) Polarizabilities of ions in perovskite-type crystals. Phys Rev 81:865–868

    Google Scholar 

  • Schmidt W (1902) Bestimmung der Dielektricitatskonstanten von Krystallen mit elektrischen Wellen. Ann Phys 9:919–937

    Google Scholar 

  • Scott AH, Curtis HL (1939) Edge correction in the determination of dielectric constant. J Res Natl Bur Stds 22:747–775

    Google Scholar 

  • Scott AH, Harris WP (1961) Residual losses in a guard-ring micrometer-electrode holder for solid-disk dielectric specimens. J Res Natl Bur Stds 65C: 101–112

    Google Scholar 

  • Shannon RD, Subramanian MA (1989) Dielectric constants of chrysoberyl, spinel, phenacite, and forsterite and the oxide additivity rule. Phys Chem Minerals 16:745–749

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, M.A., Shannon, R.D., Chai, B.H.T. et al. Dielectric constants of BeO, MgO, and CaO using the two-terminal method. Phys Chem Minerals 16, 741–746 (1989). https://doi.org/10.1007/BF00209695

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209695

Keywords

Navigation