Skip to main content
Log in

Ultracytochemical localization of Ca++-ATPase activity in the paraphyseal epithelial cells of the frog, Rana esculenta

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Ca++-ATPase activity was studied ultracytochemically (cf. Ando et al. 1981) in the paraphysis cerebri of the frog. An intense reaction was demonstrated on the plasmalemma of the microvilli at the apical pole of paraphyseal cells; in contrast, the basolateral plasmalemma showed only a slight staining. In addition, mitochondria, gap junctions, cilia, and cytoplasmic elements (e.g., microfilaments) displayed Ca++-ATPase activity. Variation of the Ca++-concentration in the incubation medium from 0.1 mM to 100 mM altered the Ca++-ATPase activity of the cell organelles. The substitution of Ca-by Mg-ions resulted in a conspicuous decrease in the enzyme activity, especially on the apical plasmalemma. Ca++-ATPase activity is claimed to be involved in a number of extra-and intracellular functions. In comparison to the epithelium of the adjacent choroid plexus the paraphyseal epithelial cell is thought to be a principal Ca-ion regulator of the cerebrospinal fluid in frogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando T, Fujimoto K, Mayahara H, Miyajima H, Ogawa K (1981) A new one-step method for the histochemistry and cytochemistry of Ca-ATPase activity. Acta Histochem Cytochem 14:705–726

    Google Scholar 

  • Ando T, Mayahara H, Fujimoto K, Miyajima H, Ogawa K (1982) Ultracytochemical localization of Ca-ATPase activity on the epithelial cells of rat trachea. Acta Histochem Cytochem 15:812–826

    Google Scholar 

  • Berridge MJ, Oschman JL, Wall BJ (1975) Intracellular calcium reservoirs in Calliphora salivary glands. In: Carafoli E, Clementi F, Drabikowsky W, Margreth A (eds) Calcium transport in contraction and secretion. Amsterdam, North Holland, p 131–138

    Google Scholar 

  • Borle AB (1973) Calcium metabolism at the cellular level. Fed Proc 32:1944–1950

    Google Scholar 

  • Bowman RH (1970) Gluconeogenesis in the isolated perfused rat kidney. J Biol Chem 245:1604–1612

    Google Scholar 

  • Carafoli E, Crompton M (1978) The regulation of intracellular calcium. In: Bronen F, Kleinzeller A (eds) Current topics in membrane and transport, Vol 10; Academic Press, New York, p 151–216

    Google Scholar 

  • Case RM, Clausen T (1973) The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol 235:75–102

    Google Scholar 

  • Chambaut AM, Leray-Pecker F, Feldman G, Hanoune J (1974) Calcium-binding properties and ATPase activities of rat liver plasma membranes. J Gen Physiol 64:104–126

    Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    Google Scholar 

  • Dambach NG, Friedman N (1974) The effect of varying ionic composition of the perfusate on liver membrane potential, gluconeogenesis and cyclic AMP response. Biochim Biophys Acta 332:374–386

    Google Scholar 

  • Dorn E (1957) Über den Feinbau der Paraphyse von Protopterus annectens. Z Zellforsch 46:115–120

    Google Scholar 

  • Dracher LA, Jasaitis AA, Kaulen AD, Liberman FA, Nemecek IB, Ostroiemov SA, Semenov AY, Skulachev VP (1972) Direct measurement of electric current generation by cytochrome oxidase, H-ATPase and bacteriorhodopsin. Nature 249:321–323

    Google Scholar 

  • Fernandez-Llebrez P, Becerra J, Marin-Giron F (1982) Ultrastructure of the paraphysis cerebri of the water snake Natrix maura LJ Comp Neurol 208:345–351

    Google Scholar 

  • Friedman N, Rasmussen H (1970) Calcium, magnesium and hepatic gluconeogenesis. Biochem Biophys Acta 222:41–50

    Google Scholar 

  • Fujimoto K, Ogawa K (1982) Enzyme cytochemical study of rat cardiac muscle. II Ca-ATPase and ouabain-sensitive, K-dependent p-nitrophenylphosphatase. Acta Histochem Cytochem 15:338–354

    Google Scholar 

  • Gibbons IR (1965) Chemical dissection of cilia. Arch Biol 76:317–352

    Google Scholar 

  • Gibbons IR, Rowe AG (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science 14:424–426

    Google Scholar 

  • Guth L, Samaha FJ (1969) Qualitative differences between actomyosin of ATPase of slow and fast mammalian muscle. Expl Neurol 25:138–152

    Google Scholar 

  • Guth L, Samaha FJ (1970) Procedure for the histochemical demonstration of actomyosin ATPase. Expl Neurol 28:365–367

    Google Scholar 

  • Hayat MA (1973) Electron microscopy of enzymes. Principle and methods. Van Nostrand Reinhold, New York, p 57

    Google Scholar 

  • Izutsu KT, Smuckler E (1978) Effects of carbon tetrachloride on rat liver plasmalemnal calcium adenosine triphosphatase. Am J Pathol 90:145–158

    Google Scholar 

  • Kamer JC van de (1949) Over de ontwikkeling, de determinantie en de betekenis van de epiphyse en de paraphyse van de Amphibiën. Dissertatie, Utrecht

    Google Scholar 

  • Kappers J Ariëns (1956) On the development, structure and function of the paraphysis cerebri. In: Kappers J Ariëns (ed) Progress in neurobiology, Amsterdam, Elsevier, p 130–145

    Google Scholar 

  • Kelly DE (1964) An ultrastructural analysis of the paraphysis cerebri in newts. Z Zellforsch 64:778–803

    Google Scholar 

  • Khan MA, Papadimitriou JM, Holt PG, Kakulas BA (1972a) A modified histochemical technique for sarcoplasmic reticular ATPase. Histochemie 30:329–333

    Google Scholar 

  • Khan MA, Papadimitriou JM, Holt PG, Kakulas BA (1972b) A calcium-citrophosphate technique for the histochemical localization of myosin ATPase. Stain Technol 47:277–282

    Google Scholar 

  • Kurokawa K, Rasmussen H (1973) Ionic control of renal gluconeogenesis. I. The interrelated effect of calcium and hydrogen ions. Biochim Biophys Acta 313:17–31

    Google Scholar 

  • Lehninger AL (1964) The mitochondrion: Molecular basis of structure and function. Academic Press, New York, pp 263

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventrikuläre Organe. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen Bd 4/10: Springer, Berlin Heidelberg New York, p 177–666

    Google Scholar 

  • Mabuchi I, Shimizu T, Mabuchi Y (1976) A biochemical study of flagellar dynine from starfish spermatozoa: protein components of the arm structure. Arch Biochem Biophys 176:564–576

    Google Scholar 

  • Matthews EK (1975) Calcium and stimulus-secretion coupling in pancreatic islet cells. In: Carafoli E, Clementi F, Drabikowsky W, Margreth A (eds) Calcium transport in contraction and secretion. Amsterdam, North Holland, p 203–210

    Google Scholar 

  • Mayahara H, Ogawa K (1968) The effect of thickness of specimen on the ultrastructural localization of alkaline phosphatase activity in the rat convoluted tubule. J Histochem Cytochem 16:721–724

    Google Scholar 

  • Mizuhira V, Ueno M (1983) Calcium transport mechanism in molting crayfish revealed by microanalysis. J Histochem Cytochem 31:214–218

    Google Scholar 

  • Mizutani A, Barrnett RJ (1965) Fine structural demonstration of phosphatase activity at pH 9. Nature (Lond) 206:1001–1003

    Google Scholar 

  • Mölbert ERG, Duspiva F von Deimling OH (1960) The demonstration of alkaline phosphatase in the electron microscope. J Biophys Biochem Cytol 7:387–390

    Google Scholar 

  • Moran DT, Rowley JC, Asher DL (1981) Calcium binding sites on sensory process in vertebrate hair cells. Proc Natl Acad Sci USA 78:3954–3958

    Google Scholar 

  • Ogawa K, Saito T, Hirano G, Mayahara H (1967) Lead citrate method for the light and electron microscopic demonstration of phosphatases at high alkaline pH. Acta Anat Nippon 42:40 (Abstract in Japanese)

    Google Scholar 

  • Oksche A (1958) Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus chorioidei für den Kohlenhydratstoffwechsel des ZNS. Z Zellforsch 48:74–129

    Google Scholar 

  • Owens DW, Ralph CL (1978) The pineal-paraphyseal complex of sea turtles. I. Light microscopic description. J Morphol 158:169–180

    Google Scholar 

  • Padykula HA, Herman E (1955) Factors affecting the activity of adenosine triphosphatase as measured by histochemical techniques. J Histochem Cytochem 3:161–167

    Google Scholar 

  • Paul E (1968a) Histochemische, elektronenmikroskopische und quantitative Studien über den Glykogenvorrat des Plexus chorioideus von Rana temporaria L. Z Zellforsch 88:511–536

    Google Scholar 

  • Paul E (1968b) Histochemische Studien an den Plexus chorioidei, an der Paraphyse und am Ependym von Rana temporaria L. Z Zellforsch 91:519–546

    Google Scholar 

  • Paul E (1972) Weitere enzymhistochemische und fluoreszenzmikroskopische Studien an den Plexus chorioidei und an der Paraphyse von Rana temporaria L. Z Zellforsch 129:76–91

    Google Scholar 

  • Peracchia C, Peracchia LL (1980a) Gap junction dynamics: reversible effects of divalent cations. J Cell Biol 87:708–718

    Google Scholar 

  • Peracchia C, Peracchia LL (1980b) Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol 87:719–727

    Google Scholar 

  • Rasmussen H (1966) Mitochondrial ion transport: mechanism and physiological significance. Fed Proc 25:903–911

    Google Scholar 

  • Rasmussen H (1970) Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170:404–412

    Google Scholar 

  • Rasmussen H, Goodman DBP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev 57:421–509

    Google Scholar 

  • Rasmussen H, Goodman DBP, Friedman N, Allen JE, Kurokawa K (1976) Ions and the control of metabolic processes. In: Handbook of physiology. Endocrinology. Washington DC: Am Physiol Soc, sec 7 Vol VII, p 225–264

    Google Scholar 

  • Reale E, Luciano L (1964) A probable source of errors in electronhistochemistry. J Histochem Cytochem 12:713–715

    Google Scholar 

  • Romero PJ, Whittam R (1971) The control of internal calcium of membrane permeability to sodium and potassium. J Physiol 214:481–507

    Google Scholar 

  • Rosenthal AS, Kregenov FM, Moses HL (1970) Some characteristics of a Ca++-dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils. Biochim Biophys Acta 196:154–162

    Google Scholar 

  • Rossum GDV (1970) Net movements of calcium and magnesium in slices of rat liver. J Gen Physiol 55:18–32

    Google Scholar 

  • Samaha FJ, Yunis EJ (1973) Quantitative and histochemical demonstration of a calcium activated mitochondrial ATPase in skeletal muscle. Exp Neurol 41:431–439

    Google Scholar 

  • Schatzman HJ (1966) ATP-dependent Ca++ extrusion from human red cell. Experientia 22:364–365

    Google Scholar 

  • Schatzman H (1973) Dependence on calcium concentration and stochiometry of the calcium pump in human red cells. J Physiol 235:551–569

    Google Scholar 

  • Schatzman HJ, Vincenzi FF (1969) Calcium movements across the membrane of human red cells. J Physiol 201:369–395

    Google Scholar 

  • Seguchi H, Okada T, Ogawa K (1982) Localization of Ca-activated adenosine triphosphatase activities in the transitional epithelium of the rabbit urinary bladder. Acta Histochem Cytochem 15:76–89

    Google Scholar 

  • Selenka E (1890) Das Stirnorgan der Wirbeltiere. Biol Zentralbl 10:323–326

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Stockem W (1965) Zur Ontogenese und Funktion der Paraphyse der Amphibien. Z Zellforsch 67:427–460

    Google Scholar 

  • Tangkrisanavinont V, Pholpramool C (1979) Extracellular free calcium and fluid secretion by the rabbit lacrimal gland. Pflügers Arch 382:275–277

    Google Scholar 

  • Tice LW, Barrnett RJ (1960) The adenosinetriphosphatase of striated muscle. J Histochem Cytochem 8:352

    Google Scholar 

  • Tice LW, Barrnett RJ (1962) Fine structural localization of adenosinetriphosphatase activity in heart muscle myofibrils. J Cell Biol 15:401–416

    Google Scholar 

  • Tice LW, Smith DS (1965) The localization of myofibrillar ATPase activity in the flight muscle of the blowfly, Calliphora erythrocephala. J Cell Biol 25:121–135

    Google Scholar 

  • Ueno S, Bambauer HJ, Umar H, Ueck M (1983a) Ultracytochemical studies of Ca-ATPase and K-NPPase activity in the retinal photoreceptor cells of the guinea pig (in preparation)

  • Ueno S, Mayahara H, Ueck M, Tsukahara I, Ogawa K (1983b) Ultracytochemical localization of ouabain-sensitive, potassium-dependent p-nitrophenyl-phosphatase activity in the lacrimal gland of the rat. Cell Tiss Res (in press)

  • Ueno S, Umar H, Bambauer HJ, Ueck M (1983c) The localization of ATPases in retinal receptor cells. Ophthalmol Res (in press)

  • Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiologic pH, with special reference to the demonstration of bile canaliculi. Am J Pathol 27:13–23

    Google Scholar 

  • Wright EM (1970) Ion transport across the frog posterior choroid plexus. Brain Res 23:302–304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of the Alexander von Humboldt Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, S., Umar, H., Bambauer, H.J. et al. Ultracytochemical localization of Ca++-ATPase activity in the paraphyseal epithelial cells of the frog, Rana esculenta . Cell Tissue Res. 235, 3–11 (1984). https://doi.org/10.1007/BF00213716

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213716

Key words

Navigation