Skip to main content
Log in

Mechanisms for the discrete aurora — A review

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The V-shock is identified as the primary mechanism for the acceleration of electrons responsible for the discrete aurora. A brief review of the evidence supporting the V-shock model is given, including the dynamics of auroral striations, anomalous motion of barium plasma at high altitudes and in-situ observations of large electric fields. The V-shock is a nonlinear, n = 0 ion cyclotron mode soliton, Doppler shifted to zero frequency. The V-shock is also shown to be a generalization of the one-dimensional double layer model, which is an ion acoustic soliton Doppler shifted to zero frequency. The essential difference between the double layer theory and the theory for the oblique, current-driven, laminar electrostatic shock is that the plasma dielectric constant in directions perpendicular to the magnetic field is c 2/V /2 a , where V a is the Alfvén velocity; but the plasma dielectric constant parallel to the magnetic field is unity. Otherwise, in the limit that the shock thickness perpendicular to the magnetic field is much larger than an ion gyroradius, the equations describing the double layer and the oblique shock are the same. The V-shock, while accounting for the acceleration of auroral electrons, requires an energy source and mechanism for generating large potential differences perpendicular to the magnetic field. An energy source is the earthward streaming protons coming from the distant magnetospheric tail. It is shown how these protons can be energized by the cross-tail electric field, which is the tailward extension of the polar cap dawn-to-dusk electric field. The local, large cross-field potential differences associated with the V-shock are seen to be the result of a non-linear, E × B drift turbulent cascade which transfers energy from small- to large-scale sizes. Energy at the smallest scale sizes comes from the kinetic energy in the ion cyclotron motion of the earthward streaming protons, which are unstable against the zero-frequency flute-mode instability. The review points out the gaps in our understanding of the mechanism of the diffuse aurora and the mechanism of the auroral substorm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1977, Physics of Magnetospheric Substorms, D. Reidel Publ. Co., Dordrecht, Holland, Boston, U.S.A.

    Google Scholar 

  • Block, L. P. and Fälthammar, C. G.: 1976, An. Geophys. 32, 161.

    Google Scholar 

  • Boswell, R. W.: 1976, Geophys. Res. Letters 3, 705.

    Google Scholar 

  • Byers, J. A. and Grewal, M.: Phys. Fluids 13, 1819.

  • Davidson, R. C.: 1972, Methods in Nonlinear Plasma Theory, Academic Press, New York.

    Google Scholar 

  • Davis, T. N.: 1978, this issue, p. 77.

  • DeForest, S. E. and McIlwain, C. E.: 1971, J. Geophys. Res. 76, 3587.

    Google Scholar 

  • Frank, L. A.: 1972, in E. R. Dyer (ed.), Critical Problems of Magnetospheric Physics, p. 35, IUCSTP Secretariat, Washington, D. C.

  • Frank, L. A. and Ackerson, K. L.: 1971, J. Geophys. Res. 76, 3612.

    Google Scholar 

  • Frank, L. A., Akerson, K. L., and Lepping, R. P.: 1976, J. Geophys. Res. 81, 5859.

    Google Scholar 

  • Fyfe, D., Montgomery, D., and Joyce, G.: 1977, J. Plasma Phys. 17, 369.

    Google Scholar 

  • Gary, S. P., Montgomery, D., and Swift, D. W.: 1960, J. Geophys. Res. 73, 7524.

    Google Scholar 

  • Goertz, C. K. and Joyce, G.: 1975, Astrophys. Space Sci. 32, 165.

    Google Scholar 

  • Gurnett, D. A.: 1972, in E. R. Dyer (ed.), Critical Problems of Magnetospheric Physics, Nat. Acad. Sci., Washington D. C., p. 123.

  • Gurnett, D. A. and Frank, L. A.: 1977, J. Geophys. Res. 82, 1031.

    Google Scholar 

  • Hallinan, T. J. and Davis, T. N.: 1976, Planetary Space Sci. 18, 735.

    Google Scholar 

  • Hardy, D. A., Hills, H. K., and Freeman, J. W.: 1975, Geophys. Res. Letters 2, 167.

    Google Scholar 

  • Hones, E. W., Jr., Asbridge, J. R., Bame, S. J., and Singer, S.: 1973, J. Geophys. Res. 78, 5463.

    Google Scholar 

  • Hones, E. W., Jr., Bame, S. J., and Asbridge, J. R.: 1976, J. Geophys. Res. 81, 227.

    Google Scholar 

  • Kan, J. R.: 1975, J. Geophys. Res. 80, 2689.

    Google Scholar 

  • Kindel, J. M. and Kennel, C. F.: 1971, J. Geophys. Res. 76, 3053.

    Google Scholar 

  • Knorr, G. and Goertz, C. K.: 1974, Astrophys. Space Sci. 31, 209.

    Google Scholar 

  • Krall, N. A. and Trivelpiece, A. W.: 1973, Principles of Plasma Physics, McGraw-Hill, New York.

    Google Scholar 

  • Kraichnan, R. H.: 1967, Phys. Fluids 10, 1417.

    Google Scholar 

  • Kraichnan, R. H.: 1975, J. Fluid Mech. 67, 155.

    Google Scholar 

  • Levy, R. H. and Hockney, R. W.: 1968, Phys. Fluids 11, 766.

    Google Scholar 

  • Lui, A. T. Y., Akasofu, S. -I., Hones, E. W., Jr., Bame, S. J., and McIlwain, C. F.: 1976, J. Geophys. Res. 81, 1415.

    Google Scholar 

  • Maggs, J. E.: 1976, J. Geophys. Res. 81, 1707.

    Google Scholar 

  • Montgomery, D. C. and Joyce, G.: 1969, J. Plasma Phys. 3, 1.

    Google Scholar 

  • Mozer, F. S., Carlson, C. W., Hudson, M. K., Torbert, R. B., Parody, B., Yatteau, J., and Kelley, M. C.: 1977, Phys. Rev. Letters 38, 292.

    Google Scholar 

  • Papadopoulos, K.: 1977, Rev. Geophys. Space Phys. 15, 113.

    Google Scholar 

  • Perkins, F. W.: 1960, J. Geophys. Res. 73, 6631.

    Google Scholar 

  • Seyler, C. E., Jr., Salu, Y., Montgomery, D., and Knorr, G.: 1975, Phys. Fluids 18, 803.

    Google Scholar 

  • Stern, D. P. and Palmadesso, P.: 1975, J. Geophys. Res. 80, 4244.

    Google Scholar 

  • Swift, D. W. 1968, J. Geophys. Res. 73.

  • Swift, D. W. 1975, J. Geophys. Res. 80, 2096.

    Google Scholar 

  • Swift, D. W. 1976, J. Geophys. Res. 81, 3935.

    Google Scholar 

  • Swift, D. W. 1977a, J. Geophys. Res. 82, 1288.

    Google Scholar 

  • Swift, D. W. 1977b, J. Geophys. Res. 82.

  • Swift, D. W. 1977c, J. Geomag. Geolec., submitted.

  • Swift, D. W. and Kan, J. R.: 1975, J. Geophys. Res. 80, 985.

    Google Scholar 

  • Swift, D. W. Stenbaek-Nielsen, H. C., and Hallinin, T. J.: 1976, J. Geophys. Res. 81, 3931.

    Google Scholar 

  • Temerin, M. 1978, J. Geophys. Res. 83, 2609.

    Google Scholar 

  • Torbert, R. B. and Mozer, F. S.: 1978, Geophys. Res. Letters 5, 135.

    Google Scholar 

  • Wescott, E. M., Rieger, E. P., Stenbaek-Nielsen, H. C., Davis, T. N., Peek, H. M., and Bottoms, P. J.: 1974. J. Geophys. Res. 79, 159.

    Google Scholar 

  • Wescott, E. M., Stenbaek-Nielsen, H. C., Davis, T. N., Murcray, W. B., Peek, H. M., and Bottoms, P. J.: 1975, J. Geophys. Res. 80, 951.

    Google Scholar 

  • Wescott, E. M., Stenbaek-Nielsen, H. C., Hallinan, T. J., Davis, T. N., and Peek, H. M.: 1976, J. Geophys. Res. 81, 4495.

    Google Scholar 

  • Young, T. S. T., Callen, J. D., and McCune, J. E.: 1971, Phys. Fluids 14, 2783.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swift, D.W. Mechanisms for the discrete aurora — A review. Space Sci Rev 22, 35–75 (1978). https://doi.org/10.1007/BF00215813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215813

Keywords

Navigation