Skip to main content
Log in

Comparative studies of quinacrine-positive neurones in the myenteric plexus of stomach and intestine of guinea-pig, rabbit and rat

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The number of quinacrine-fluorescent nerve cell bodies and the percentage of the ganglion area occupied by this fluorescence within stretch preparations of the myenteric plexus of the stomach and ileum of the guineapig, rabbit and rat were assessed. The number of quinacrine-positive cell bodies per cm2 of plexus varied between 1045 in the rabbit ileum to 2633 in the rat stomach, whilst the percentage of the ganglionic area occupied by fluorescence was approximately 10 %. The distribution of quinacrine-fluorescent nerve fibres and cell bodies in the myenteric plexus was compared to the distribution of nerves revealed by catecholamine fluorescence and by staining for acetylcholinesterase in the stomach and ileum of all three species. Quinacrine fluorescence appears to be selective for non-adrenergic, non-cholinergic nerves; the possibility that it binds to high levels of ATP is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ålund M (1978) Semiquantitative estimations of quinacrine fluorescence in intestinal nerve fibres. Histochemie 58:153–161

    Google Scholar 

  • Ålund M, Olson L (1978) Characterization of quinacrine-binding gastrointestinal nerve fibres. A fluorescence histochemical method for non-adrenergic, non-cholinergic nerves. Neurosci Lett Suppl 1:265

    Google Scholar 

  • Ålund M, Olson L (1979) Depolarization-induced decreases in fluorescence intensity of gastro-intestinal quinacrine binding nerves. Brain Res 166:121–137

    Google Scholar 

  • Ålund M, Olson L (1980) Quinacrine-binding nervous elements in intraocular grafts of intestinal smooth tissue. Med Biol 58:1–4

    Google Scholar 

  • Böck P (1980a) Identification of paraneurons by labelling with quinacrine (atebrin). Arch Histol Jpn 43:35–44

    Google Scholar 

  • Böck P (1980b) Adenine nucleotides in the carotid body. Cell Tissue Res 206:279–290

    Google Scholar 

  • Bülbring E (1953) Measurements of oxygen consumption in smooth muscle. J Physiol (Lond) 122:111–134

    Google Scholar 

  • Burnstock G (1969) Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21: 247–324

    Google Scholar 

  • Burnstock G (1971) Neural nomenclature. Nature (Lond) 229:282–283

    Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 20:509–581

    Google Scholar 

  • Burnstock G (1975) Purinergic transmission. In: Iverson L, Snyder S (eds) Handbook of Psychopharmacology. Plenum Press, New York, pp 131–194

    Google Scholar 

  • Burnstock G, Cocks T, Crowe R (1978a) Evidence for purinergic innervation of the anococcygeus muscle. Br J Pharmacol 64:13–20

    Google Scholar 

  • Burnstock G, Cocks T, Crowe R, Kasakov L (1978b) Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63:125–128

    Google Scholar 

  • Burnstock G, Crowe R, Wong H (1978 c) Comparative pharmacological and histochemical evidence for purinergic inhibitory innervation of the portal vein of the rabbit, but not guinea-pig. Br J Pharmacol 65:377–388

    Google Scholar 

  • Burnstock G, Hökfelt T, Gershon MD, Iversen LL, Kosterlitz HW, Szurszewski JH (1979) Nonadrenergic, non-cholinergic autonomic neurotransmission mechanisms. MIT Press, Boston. Neurosci Res Prog Bull 17

    Google Scholar 

  • Carraway R, Leeman SE (1976) Characterization of radio-immunoassayable neurotensin in the rat — its differential distribution in the central nervous system, small intestine and stomach. J Biol Chem 251:7045–7052

    Google Scholar 

  • Cocks T, Crowe R, Burnstock G (1979) Non-adrenergic, non-cholinergic (purinergic?) inhibitory innervation of the rabbit rectococcygeus muscle. Eur J Pharmacol 54:261–271

    Google Scholar 

  • Comings DE, Kovacs BW, Avelino E, Harris DC (1975) Mechanisms of chromosome banding. V. Quinacrine banding. Chromosoma (Berl) 50:111–145

    Google Scholar 

  • Costa M, Furness JB (1971) The innervation of the proximal colon of the guinea-pig. Proc Anat Physiol Pharmacol Soc 2:29–30

    Google Scholar 

  • Costa M, Furness JB, Gabella G (1971) Catecholamine containing nerve cells in the mammalian myenteric plexus. Histochemie 25:103–106

    Google Scholar 

  • Costa M, Furness JB, Buffa R, Said SI (1980a) Distribution of enteric nerve cell bodies and axons showing immunoreactivity for vasoactive intestinal polypeptide in the guinea-pig intestine. Neuroscience 5:587–596

    Google Scholar 

  • Costa M, Furness JB, Smith IJL, Davies B, Oliver J (1980b) An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience 5:841–852

    Google Scholar 

  • Davison JS, Al-Hassani M, Crowe R, Burnstock G (1978) The non-adrenergic inhibitory innervation of the guinea-pig gall bladder. Pfluegers Arch 377:43–49

    Google Scholar 

  • Ekelund M, Alrén B, Håkanson R, Lundquist I, Sundler F (1980) Quinacrine accumulates in certain peptide hormone-producing cells. Histochemistry 66:1–9

    Google Scholar 

  • Elde RT, Hökfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine-enkephalin. Initial observations on the nervous system of the rat. Neuroscience 1:349–351

    Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Fujita T (1976) The gastrointestinal endocrine cell and its paraneuronic nature. In: Coupland RE, Fujita T (eds) Chromaffin, Enterochromaffin and Related Cells. Elsevier, New York, pp 191–208

    Google Scholar 

  • Furness JB, Costa M (1971) Morphology and distribution of intrinsic adrenergic neurones in the proximal colon of the guinea-pig. Z Zellforsch 120:346–363

    Google Scholar 

  • Furness JB, Costa M (1980) Types of nerves in the enteric nervous system. Neuroscience 5:1–20

    Google Scholar 

  • Gabella G (1971) Neuron size and number in the myenteric plexus in the newborn and adult rat. J Anat 109:81–95

    Google Scholar 

  • Gillespie JS (1972) The rat anococcygeus muscle and its reponse to nerve stimulation and to some drugs. Br J Pharmacol 45:404–416

    Google Scholar 

  • Gillespie JS, McGath JC (1974) The response of the cat anococcygeus muscle to nerve or drug stimulation and a comparison with the rat anococcygeus. Br J Pharmacol 50:109–118

    Google Scholar 

  • Gunn M (1968) Histological and histochemical observations on the myenteric and submucous plexus of mammals. J Anat 102:223–239

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Johansson O, Efendic S, Luft R, Arimura A (1975) Are there somatostatin containing nerves in the rat gut? Immunohistochemical evidence for a new type of peripheral nerve. Experimentia 31:852–854

    Google Scholar 

  • Hökfelt T, Johansson O, Kellerth JO, Ljungdahl A, Nilsson G, Nygards A, Pernow B (1977) Immunohistochemical distribution of Substance P. In: Von Euler US, Pernow B (eds) Substance P. Nobel Symposium 37 Raven Press, New York, pp 117–145

    Google Scholar 

  • Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980). Peptidergic neurones. Nature (Lond) 284:515–521

    Google Scholar 

  • Irvin JL, Irvin EM (1954) The interaction of quinacrine with adenine nucleotides. J Biol Chem 210:45–56

    Google Scholar 

  • Irvin JL, Irvin EM, Parker FS (1949) The interaction of antimalarials with nucleic acids. I Acridines. II Quinolines. Science 110:426–428

    Google Scholar 

  • Irwin DA (1931) The anatomy of the Auerbach's plexus. Am J Anat 49:141–166

    Google Scholar 

  • Jacobowitz D (1965) Histochemical studies of the autonomic innervation of the gut. J Pharmacol Exp Ther 149:358–364

    Google Scholar 

  • Jessen KR, Mirsky R, Dennison ME, Burnstock G (1979) GABA maybe a neurotransmitter in the vertebrate peripheral nervous system. Nature (Lond) 281:71–74

    Google Scholar 

  • Johansson O, Hökfelt T, Elde RP, Schultzberg M, Terenius L (1978) Immunohistochemical distribution of enkephalin neurones. In: Costa E, Trabuchi M (eds). Advances in Biochemical Psychopharmacology 18: Raven Press, New York, pp 51–69

    Google Scholar 

  • Karnovsky MJ, Roots L (1964) A direct colouring thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    Google Scholar 

  • Koelle GB, Koelle ES, Friedenwald JS (1950) The effect of inhibition of specific and non-specific cholinesterase on motility of the isolated ileum. J Pharmacol Exp Ther 100:180–191

    Google Scholar 

  • Konigsmark BW (1970) Methods for the counting of neurons. In: Nauta WJH, Ebbeson SOE (eds), Springer-Verlag, New York, pp 315–340

  • Larsson LI, Fahrenkrug I, Schaffalitzky de Muckadell O, Sundler F, Håkanson R, Rehfeld JF (1976) Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci USA 73:3197

    Google Scholar 

  • Leeman SE, Mroz EA, Carraway RE (1977) Substance P and neurotensin. Peptides in Neurobiology. In: Gainer H (ed) Plenum Press, New York, pp 99-144

  • Leitner JW, Sussman KE, Vatter AE, Schneider FH (1975) Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinol 96:662–677

    Google Scholar 

  • Malmfors T, Thoenen H (1971) 6-Hydroxydopamine and Catecholamine Neurones. In: Malmfors T, Thoenen H (eds) North Holland Publishing Company, Amsterdam, London

  • Maslennikova LD (1962) On the relation between the motor function of the intestine and the gradient of its nervous elements. Bull Exp Biol Med USSR (English translation) 52:972–976

    Google Scholar 

  • Matsuo H (1934) A contribution on the anatomy of Auerbach's plexus. Jap J Med Sci Anat 4:417–428

    Google Scholar 

  • Norberg K-A (1964) Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int J Neuropharmacol 3:379–382

    Google Scholar 

  • Ohkubo K (1936) Studien über das intramurale Nervensystem des Verdauungskanals. III. Affe und Mensch. Jap J Med Sci Anat 6:219–247

    Google Scholar 

  • Olson L, Ålund H, Norberg K-A (1976) Fluorescence-microscopical demonstration of a population of gastro-intestinal nerve fibres with a selective affinity for quinacrine. Cell Tissue Res 171:407–423

    Google Scholar 

  • Pearse AGE, Polak JM (1975) Immunohistochemical localization of Substance P in mammalian intestine. Histochemie 41:373–375

    Google Scholar 

  • Picotti GB, DaPrada M, Pletcher A (1976) Uptake and release of mepacrine in blood platelets. Arch Pharm (Weinheim) 292:127–131

    Google Scholar 

  • Read JB, Burnstock G (1968) Comparative histochemical studies of adrenergic nerves in the enteric plexus of vertebrate large intestine. Comp Biochem Physiol 27:505–517

    Google Scholar 

  • Richards JG, Da Prada M (1977) Uranaffin reaction: a new cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines. J Histochem Cytochem 25:1322–1336

    Google Scholar 

  • Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfield JF, Brown M, Elde R, Goldstein M, Said S (1980) Distribution of peptide and catecholamine containing neurons in the gastrointestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase. Neurosci 5:689–744

    Article  CAS  PubMed  Google Scholar 

  • Tubbs RK, Ditmars WE, van Winkle Q (1964) Heterogeneity of the interaction of DNA with acriflavine. J Mol Biol 9:545–557

    Google Scholar 

  • Wilson AJ, Furness JB, Costa M (1979) A unique population of uranaffin-positive intrinsic nerve endings in the small intestine. Neurosci Lett 14:303–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowe, R., Burnstock, G. Comparative studies of quinacrine-positive neurones in the myenteric plexus of stomach and intestine of guinea-pig, rabbit and rat. Cell Tissue Res. 221, 93–107 (1981). https://doi.org/10.1007/BF00216573

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216573

Key words

Navigation