Skip to main content
Log in

Redox interconversion of glutathione reductase from Escherichia coli. A study with pure enzyme and cell-free extracts

  • Original Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The glutathione reductase from E. coli was rapidly inactivated following aerobic incubation of the pure and cell-free extract enzymes with NADPH, NADH and other reductants. The inactivation of the pure enzyme depended on the time and temperature of incubation (t1/2 = 2 min at 37°C), and was proportional to the |INADPH|/|enzyme| ratio, reaching 50% in the presence of 0.3 μM NADPH and 45 μM NADH respectively, at a subunit concentration of 20 nM. Higher pyridine nucleotide concentrations were required to inactivate the enzyme from cell-free extracts. Two apparent pKa, corresponding to pH 5.8 and 7.3, were determined for the redox inactivation. The enzyme remained inactive even after eliminating the excess NADPH by gel chromatography.

E. coli glutathione reductase was protected by oxidized and reduced glutathione against redox inactivation with both pure and cell-free extract enzymes. Ferricyanide and dithiothreitol protected only the pure enzyme, while NADP+ exclusively protected the cell-free extract enzyme. The inactive glutathione reductase was reactivated by treatment with oxidized and reduced glutathione, ferricyanide, and dithiothreitol in a time-and temperature-dependent process. The oxidized form of glutathione was more efficient and specific than the reduced form in the protection and reactivation of the pure enzyme.

The molecular weight of the redox-inactivated E. coli glutathione reductase was similar to that of the dimeric native enzyme, ruling out aggregation as a possible cause of inactivation. A tentative model is discussed for the redox inactivation, involving the formation of an ‘erroneous’ disulfide bridge at the glutathione-binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monod J, Changeux J-P, Jacob F: Allosteric proteins and cellular control systems. J Mol Biol 6:306–329, 1963.

    Google Scholar 

  2. Holzer H, Duntze W: Metabolic regulation by chemical modification of enzymes. Ann Rev Biochem 40:345–374, 1971.

    Google Scholar 

  3. Krebs EG, Beavo JA: Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48:923–959, 1979.

    Google Scholar 

  4. Chock PB, Rhee SG, Stadtman ER: Interconvertible enzyme cascades in cellular regulation. Ann Rev Biochem 49:813–843, 1980.

    Google Scholar 

  5. Pekala PH, Anderson BM: Non-oxidation-reduction reactions of pyridine nucleotides. In J Everse, B Anderson, K-S You (eds). The Pyridine Nucleotide Coenzymes. Academic Press, New York, 1982, pp 325–377.

    Google Scholar 

  6. Grisolia S: The catalytic environment and its biological implications. Physiol Rev 44:657–712, 1964.

    Google Scholar 

  7. Herrera J, Paneque A, Maldonado JM, Barea JL, Losada M: Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardi. Biochem Biophys Res Common 48:996–1003, 1972.

    Google Scholar 

  8. Losada M: Interconversion of nitrate and nitrite reductase of the assimilatory type. In EH Fischer, EG Krebs, H Neurath, ER Stadtman (eds). Metabolic Interconversion of Enzymes. Springer, Berlin, 1974, pp 257–270.

    Google Scholar 

  9. Guerrero MG, Vega JM, Losada M: The assimilatory nitrate reducing system and its regulation. Ann Rev Plant Physiol 32:169–204, 1981.

    Google Scholar 

  10. Vega JM, Greembaum P, Garrett RH: Studies on the in vitro inactivation of the Neurospora crassa assimilatory nitrite reductase in the presence of reduced pyridine nucleotides plus flavin. Biochim Biophys Acta 377:251–257, 1975.

    Google Scholar 

  11. Chaparro A, De la Rosa MA, Vega JM: Involvement of oxygen in Chlorella fusca nitrate reductase inactivation by reduced nicotinamide adenine dinucleotide. Z Pflanzenphysiol 95:77–85, 1979.

    Google Scholar 

  12. De la Rosa MA, Gómez-Moreno C, Vega JM: Interconversion of nitrate reductase from Ankistrodesmus braunii related to redox changes. Biochim Biophys Acta 662:77–85, 1981.

    Google Scholar 

  13. Holmgreen A: Pyridine-nucleotide-disulfide oxidorreductases. In J Jeffrey (ed). Experientia Supplementum vol 36, Dehydrogenases Requiring Nicotinamide Coenzymes. Birkhauser, Basel, 1980, pp. 149–180.

    Google Scholar 

  14. Meister A, Anderson MA: Glutathione. Ann Rev Biochem 52:711–760, 1983.

    Google Scholar 

  15. Williams CHJr: Flavin-dependent dehydrogenases and oxidases. In PD Boyer (ed). The enzymes vol XIII, Academic Press, New York, 1976, pp. 89–173.

    Google Scholar 

  16. Loos H, Roos D, Weening R, Houwerzijl J: Familial deficiency of glutathione reductase in human blood cells. Blood 48:53–62, 1976.

    Google Scholar 

  17. Roos D, Weening RS, Loos JA: The protective role of glutathione. In F Guettler, JWT Seakins, RA Harkness (eds). Inborn Errors of Immunity and Phagocytosis. University Park Press, Baltimore, 1979, pp 261–286.

    Google Scholar 

  18. Mata AM, Pinto MC, López-Barea J: Purification by affinity chromatography of glutathione reductase (EC 1.6.4.2) from Escherichia coli and characterization of such enzyme. Z Naturforsch 39c:908–915, 1984.

    Google Scholar 

  19. Thieme R, Pai EF, Schirmer RH, Schulz GE: Three-demensional structure of glutathione reductase at 2 Å resolution. J Mol Biol 152:763–782, 1981.

    Google Scholar 

  20. Krauth-Siegel RL, Blatterspiel R, Saleh M, Schiltz E, Schirmer RH, Untücht-Grau R: Glutathione reductase from human erythrocytes. The sequence of the NADPH domain and of the interface domain. Eur J Biochem 121:259–267, 1982.

    Google Scholar 

  21. Pai EF, Schulz GE: The catalytic mechanism of glutathione red uctase as derived from X-ray diffraction analysis of reaction intermediates. J Biol Chem 258:1752–1757, 1983.

    Google Scholar 

  22. López-Barea J, Lee C-Y: Mouse-liver glutathione reductase. Purification, kinetics and regulation. Eur J Biochem 98:487–499, 1979.

    Google Scholar 

  23. López-Barea J: Mouse-liver glutathione reductase: inactivation by NADPH of two allelic variants. Rev Esp Fisiol 37:249–254, 1981.

    Google Scholar 

  24. Pinto MC, Mata AM, López-Barea J: Reversible inactivation of Saccharomyces cerevisae glutathione reductase under reducing conditions. Arch Biochem Biophys 228:1–12, 1984.

    Google Scholar 

  25. Pinto MC: Mecanismo de interconversión redox de la glutatión reductasa de Saccharomyces cerevisiae. Ph D Dissertation, Universidad de Extremadura, Badajoz, España, 1983, pp 1–212.

    Google Scholar 

  26. Pinto MC, Mata AM, López-Barea J: Evolución del espectro de la glutatión reductasa de levaduras durante su interconversión redox (Abstract). II Congr. Luso-Español Bioquim. pp 63, 1983.

  27. López-Barea J, Pinto MC, Mata AM: Glutathione reductase redox interconversion (Abstract). XVth FEBS Meeting, pp 182, 1983.

  28. Pesce A, Fondy TP, Stolzenbach F, Castillo F, Kaplan NO: The comparative enzymology of lactic dehydrogenases. J Biol Chem 242:2151–2167, 1967.

    Google Scholar 

  29. Lowry OH, Rosebrough MJ, Farr AL, Randall RJ: Protein measurements with the Folin-phenol reagent. J Biol Chem 193:265–275, 1951.

    CAS  PubMed  Google Scholar 

  30. Brodelius P, Larsson P-O, Mosbach K: The synthesis of three AMP-analogues and their application as general ligands in biospecific affinity chromatography. EurJ Biochem 47:81–89, 1974.

    Google Scholar 

  31. Marusyk R, Sergeant A: A simple method for dialysis of small-volume samples. Anal Biochem 105:403–404, 1980.

    Google Scholar 

  32. Davis BJ: Disc electrophoresis II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427, 1964.

    Google Scholar 

  33. Reisner AH, Nemes P, Bucholtz C: The use of Coomassie brilliant blue G-250-perchloric acid solution for staining in electrophoresis and isoelectric focusing in polyacrylamide gels. Anal Biochem 64:509–516, 1975.

    Google Scholar 

  34. Andrews P: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J 96:595–606, 1965.

    Google Scholar 

  35. Akerboom TPM, Sies H: Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382, 1981.

    Google Scholar 

  36. Moreno CG, Aparicio PJ, Palacian E, Losada M: Interconversion of the active and inactive forms of Chlorella nitrate reductase. FEBS Lett 26:11–14, 1972.

    Google Scholar 

  37. Omachi A, Scott CB, Hegarty H: Pyridine nucleotides in human erythrocytes in different metabolic states. Biochim Biophys Acta 184:139–147, 1969.

    Google Scholar 

  38. Arscott LD, Thorpe C, Williams CHJr: Glutathione reductase from yeast. Differential reactivity of the nascent thiols in the two-electron reduced enzyme and properties of a mono-alkylated derivative. Biochemistry 20:1513–1520, 1981.

    Google Scholar 

  39. De la Rosa FF, Castillo F, Palacian E: Effects of denaturing agents on spinach nitrate reductase. Phytochemistry 16:875–879, 1977.

    Google Scholar 

  40. Barea JL, Sosa FM, Ortega T: Regulación de la NADH-nitrato reductasa de Chlamydomonas reinhardi. inactivación reversible in vivo e in vitro. Ann Edafol Agrobiol 33:1045–1054, 1974.

    Google Scholar 

  41. Worthington DJ, Rosemeyer MA: Glutathione reductase from human erythrocytes. Catalytic properties and aggregation. Eur J Biochem 67:231–238, 1976.

    Google Scholar 

  42. Worthington DJ, Rosemeyer MA: Human glutathione reductase: purification of the crystalline enzyme from erythrocytes. Eur J Biochem 48:167–177, 1974.

    Google Scholar 

  43. Jocelyn PC: Biochemistry of the SH Group. Academic Press, New York, 1972, pp 1–403.

    Google Scholar 

  44. Dubler RE, Anderson BM: Simultaneous inactivation of the catalytic activities of yeast glutathione reductase by N-alkylmaleimides. Biochim Biophys Acta 659:70–85, 1981.

    Google Scholar 

  45. Mata AM: Glutatión reductasa de Escherichia coli. Estudio de su interconversion redox in vitro e in vivo. Ph D Dissertation, Universidad de Extremadura, Badajoz, España, 1983, pp 1–203.

    Google Scholar 

  46. Mata AM, Pinto MC, López-Barea J: Interconversión redox de la glutatión reductasa de E. coli. Estudios in vitro e in vivo (Abstract). II Congr Luso-Español Bioquim pp 117, 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mata, A.M., Pinto, M.C. & López-Barea, J. Redox interconversion of glutathione reductase from Escherichia coli. A study with pure enzyme and cell-free extracts. Mol Cell Biochem 67, 65–76 (1985). https://doi.org/10.1007/BF00220987

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220987

Keywords

Navigation