Skip to main content
Log in

Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae)

A second sensory cell line from photoreceptor cell to pinealocyte

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The ultrastructure of the “cells containing residual bodies” (Collin, 1969) was investigated in the pineal organ of Lampetra planeri. These cells are characterized by their indoleamine metabolism (Meiniel, 1978; Meiniel and Hartwig, 1980). Morphologically, they belong mainly to two types: (1) a photoreceptor cell type, and (2) a pinealocyte cell type. The first type is present in the pineal sensory epithelium and in the atrium, while the second is observed in the deep part of the atrium. Intermediate cell types are rare. All these cells are characterized by the presence of voluminous dense bodies, the 5-HT-storing structures, in their cytoplasm.

The elongated cone-type photoreceptor cells show a segmental organization and well-developed outer segments consisting of short disks (2–3 μm), while their basal pedicles form synapses with the dendritic processes of neurons. The pinealocytes are spherical or oval in shape, their receptor poles being regressed to cilia of the 9+0 type. In these cells, no synaptic ribbons have to date been observed. In both cell types a Golgi apparatus is present producing dense granules 130 nm in diameter and a polymorphous dense material.

The photoreceptor cells most probably respond to light and transmit a sensory (i.e., nervous) message. In addition, they produce and metabolize indoleamines, probably including, melatonin (Meiniel, 1978; Meiniel and Hartwig, 1980). The pinealocytes, in spite of their loss of direct photosensitivity, retain their capacity to metabolize indoleamines (Meiniel, 1978; Meiniel and Hartwig, 1980).

The presence, in the same pineal organ, of another photoreceptor cell type (cf. Collin, 1969–1971) differing morphologically as well as biochemically (no detectable indoleamine metabolism) from the photoreceptor cell type described in the present investigation, points to the existence of two different sensory cell lines: (1) a “pure” photoreceptor line, and (2) a photoneuroendocrine line. The phylogenetic evolution of these two cell lines is discussed in terms of functional analogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertolini B, Mangia F (1966) Osservazioni sulla ultrastructura dell' occhio pineale della lampreda. Rend Acc Naz Lincei 41:147–153

    Google Scholar 

  • Bubenik GA, Brown GM, Grota LG (1976) Differential localization of N-acetylated indolealkylamines in CNS and the Harderian gland using immunohistology. Brain Res 118:417–427

    Google Scholar 

  • Cameron J (1904) On the origin of the epiphysis cerebri as a bilateral structure in the chick. Proc Scott Micr Soc 4:11–17

    Google Scholar 

  • Clabough J (1973) Cytological aspects of pineal development in rats and hamsters. Am J Anat 137:215–230

    Google Scholar 

  • Collin JP (1968) L'épiphyse des Lacertiliens: relations entre les données microélectroniques et celles de l'histochimie (en fluorescence U.V.) pour la détection des indole-et catécholamines. CR Soc Biol 162:1785–1789

    Google Scholar 

  • Collin JP (1969) Contribution à l'étude de l'organe pinéal. De l'épiphyse sensorielle à la glande pinéale: modalités de transformation et implications fonctionnelles. Ann Stn Biol,Besse-en-Chandesse Fr., Suppl n∘1, 1–359

  • Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The Pineal Gland. Churchill, London, pp 79–125

    Google Scholar 

  • Collin JP (1976) La rudimentation des photorécepteurs dans l'organe pinéal des Vertébrés. In: CNRS (ed) Mécanismes de la rudimentation des organes chez les embryons de Vertébrés, Paris, 393–408

  • Collin JP, Meiniel A (1971) L'organe pinéal. Etudes combinées ultrastructurales, cytochimiques (monoamines) et expérimentales, chez Testudo mauritanica. Grains denses des cellules de la lignée “sensorielle” chez les Vertébrés. Arch Anat Micr Morphol Exp 60:269–304

    Google Scholar 

  • Dodt E (1973) The parietal eye (pineal and parietal organs) of lower vertebrates. Handb Sensory Physiol VII, 3B:113–140

    Google Scholar 

  • Eakin RM (1963) Lines of evolution of photoreceptors. General physiology of cell specialization, Mazia D, Tyler A (eds), New-York, 398–425

  • Eakin RM (1973) The third eye. University of California Press. Berkeley, Los Angeles, London, 1–157

    Google Scholar 

  • Falcon J (1978) Pluralité et sites d'élaboration des messages de l'organe pinéal. Etude chez un Vertébré inférieur: le brochet (Esox lucius, L.). Thèse de 3ème cycle, Université de Poitiers, France

    Google Scholar 

  • Flight WFG, Van Donselaar E (1975a) On the effect of a prolonged osmium treatment on the ultrastructure of some cells of the pineal organ and the retina in the urodele, Diemictylus viridescens viridescens. Koninkl Nederl Akademie van Wetenschappen, Series C 78:1–15

    Google Scholar 

  • Flight WFG, Van Donselaar E (1975b) Comparative ultrastructural characteristics of some pineal retinal cell types in the urodele. Diemictylus viridescens viridescens, as revealed by a ZnIO method. Koninkl Nederl Akademie van Wetenschappen, Series C 78:1–12

    Google Scholar 

  • Freund D, Arendt J, Vollrath L (1977) Tentative immunohistochemical demonstration of melatonin in the rat pineal gland. Cell Tissue Res 181:239–244

    Google Scholar 

  • Hafeez MA, Quay WB (1969) Histochemical and experimental studies of 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen Comp Endocrinol 13:211–217

    Google Scholar 

  • Kappers J Ariëns (1960) The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z Zellforsch 52:163–215

    Google Scholar 

  • Kappers J Ariëns (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. In: Kappers JA, Schadé JP (eds) Structure and Function of the Epiphysis cerebri. Prog Brain Res. 10:87–153

  • Kuruma I, Okada T, Kataoka K, Sorimachi M (1970) Ultrastructural observation of 5-hydroxytryptamine storing granules in the domestic fowl thrombocytes. Z Zellforsch 108:268–281

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • Meiniel A (1971) Etude cytophysiologique de l'organe parapinéal de Lampetra planeri. J Neuro-Visc Rel 32:157–199

    Google Scholar 

  • Meiniel A (1976) Contribution à l'étude du complexe pariétal embryonnaire des Lacertiliens. Différenciation cellulaire de l'épiphyse de Lacerta vivipara (Jacquin) en rapport avec les activités sensorielle, sécrétoire et neurohumorale (biosynthéses indoliques). Thèse Doctorat d'Etat, Université de Clermont Fr., A.O. C.N.R.S. 12941

  • Meiniel A (1978) Présence d'indolamines dans les organes pinéal et parapinéal de Lampetra planeri (Pétromyzontoïdes). CR Acad Sc Paris, D 287:313–316

    Google Scholar 

  • Meiniel A (1979a) Detection and localization of biogenic amines in the pineal complex of Lampetra planeri (Petromizontidae). In: Kappers J Ariëns, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Prog Brain Res 52:303–307

  • Meiniel A (1979b) Les “cellules a corps résiduels” des organes pariétaux de Lampetra planeri; démonstration de leur appartenance aux cellules de la lignée sensorielle. CR Acad Sc Paris, D 288:101–104

    Google Scholar 

  • Meiniel A, Collin JP (1971) Le complexe pinéal de l'ammocète (Lampetra planeri, Bl.). Identification du ganglion sous-jacent à l'organe parapinéal et relations épithalamiques des organes pinéal et parapinéal. Z Zellforsch 117:354–380

    Google Scholar 

  • Meiniel A, Hartwig HG (1980) Demonstration of the presence of indoleamines in the pineal complex of Lampetra planeri by histochemistry and microspectrofluorimetry. J Neural Trans (to be published 1980)

  • Morita Y, Dodt E (1973) Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopoldina 38:331–339

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The Pineal Gland. Churchill, London, pp 127–146

    Google Scholar 

  • Oksche A, Hartwig HG (1979) Pineal sense organs. Components of photoneuroendocrine systems. In: Kappers J Ariëns, Pévet P (eds) The Pineal Gland of Vertebrates Including Man. Prog Brain Res 52:113–130

  • Oksche A, Ueck M, Rüdeberg C (1971) Comparative ultrastructural studies of sensory and secretory elements in pineal organs. In: Heller H, Lederis K (eds) Subcellular Organization and Function in Endocrine Tissues, Cambridge University Press, London New York. 7–25

    Google Scholar 

  • Owman Ch (1964) New aspects of the mammalian pineal gland. Acta Physiol Scand 63: suppl.240:1–40

    Google Scholar 

  • Owman Ch, Rüdeberg C (1970) Light, fluorescence and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550

    Google Scholar 

  • Owman Ch, Rüdeberg C, Ueck M (1970) Fluoreszenzmikroskopischer Nachweis biogener Monoamine in the Epiphysis cerebri von Rana esculenta and Rana pipiens. Z Zellforsch 111:550–558

    Google Scholar 

  • Petit A (1968) Embryogenèse de l'épiphyse et de l'organe sous-commissural de la Couleuvre à collier Tropidonotus natrix L. Arch Anat Embryol Exp (Strasbourg) 52:1–25

    Google Scholar 

  • Petit A (1971) L'épiphyse d'un serpent (Tropidonotus matrix L.). I. Etude structurale et ultrastructurale. Z Zellforsch 120:94–119

    Google Scholar 

  • Pévet P (1976) Correlations between pineal gland and sexual cycle. An electron microscopical and histochemical investigation on the pineal gland of the hedgehog, mole, mole-rat and white rat. Thesis Univ of Amsterdam

  • Pévet P (1977) On the presence of different populations of pinealocytes in the mammalian pineal gland. J Neural Trans 40:289–304

    Google Scholar 

  • Pévet P (1979) Ultrastructure of the mammalian pinealocyte. In: Reiter RJ (ed) The Pineal Gland. Anatomy and Biochemistry, vol 1. The Uniscience Series: The Pineal Gland. CRL Press: INC Palm Beach, Florida USA (in press)

    Google Scholar 

  • Pévet P, Collin JP (1976) Les pinéalocytes de Mammifèrs: diversité, homologies, origine. Etude chez la taupe adulte (Talpa europaea L.) J Ultrastruct Res 57:22–31

    Google Scholar 

  • Pévet P, Kappers J Ariëns, Voûte AM (1977) Morphologic evidence for differentiation of pinealocytes from photoreceptor cells in the adult noctule bat (Nyctalus noctula, Schreber). Cell Tissue Res 182:99–109

    Google Scholar 

  • Quay WB, Jongkind JF, Kappers J Ariëns (1967) Localizations and experimental changes in monoamines of the reptilian pineal complex studied by fluorescence histochemistry. Anat Rec 157:304–305

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Semm P, Vollrath L (1979a) Electrophysiology of the guinea-pig pineal organ: Sympathetically influenced cells responding differently to light and darkness. Neurosci Letters 12:93–96

    Google Scholar 

  • Semm P, Vollrath L (1979b) Electrophysiology of the guinea-pig pineal organ: Sympathetic influence and different reactions to light and darkness. In: Kappers J Ariëns, Pévet P (eds) The Pineal Gland of Vertebrates Including Man. Prog Brain Res 52:107–111

  • Studnička F Ch (1893) Sur les organes pariétaux de Petromyzon planeri. Sitzung Gesell Wissensch (Prague): 1–50

  • Tretjakoff D (1915) Die Parietalorgane von Petromyzon fluviatilis. Z Wissensch Zool 113:1–112

    Google Scholar 

  • Ueck M (1971) Strukturbesonderheiten der Anurenepiphyse nach prolongierter Osmierung und Anwendung der Acetylcholinesterase-Reaktion. Z Zellforsch 112:526–541

    Google Scholar 

  • Ueck M (1973) Fluoreszenzmikroskopische und elektronenmikroskopische Untersuchungen am Pinealorgan verschiedener Vogelarten. Z Zellforsch 137:37–62

    Google Scholar 

  • Van de Kamer JC (1949) Over de ontwikkeling, de determinatie en de betekenis van de epiphyse en de paraphyse van de amphibiën. Thesis. Faculty of Sciences. Van der Wiel, Arnhem

    Google Scholar 

  • Vivien-Roels B (1976) L'épiphyse des Chéloniens. Etude embryologique, structurale, ultrastructurale; analyse qualitative et quantitative de la sérotonine dans les conditions normales et expérimentales. Thèse Doctorat d'Etat, Strasbourg, France, AO CNRS 990

    Google Scholar 

  • Vivien-Roels B, Dubois MP (1979) Immunohistochemical identification of melatonin in the pineal gland and the retina of lower vertebrates. X Conference of European comparative Endocrinologists. Sorrento (Italy). Gen Comp Endocrinol (In press)

  • Vivien-Roels B, Petit A (1973) Embryogenèse du complexe épiphysaire chez la Tortue mauresque Testudo graeca L. Ann Embryol Morphol 6:151–168

    Google Scholar 

  • Wartenberg H, Baumgarten HG (1969) Untersuchungen zur fluorescenz- und elektronenmikroskopischen Darstellung von 5-Hydroxytryptamin (5-HT) im Pineal-Organ von Lacerta viridis und L. muralis. Z Anat Entwick Gesch 128:185–210

    Google Scholar 

  • Wurtman RJ, Axelrod J, Kelly DE (1968) The Pineal. Academic Press, New York London, 1–199

    Google Scholar 

  • Zimmerman BL, Tso MOM (1975) Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J Cell Biol 66:60–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiniel, A. Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae). Cell Tissue Res. 207, 407–427 (1980). https://doi.org/10.1007/BF00224617

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224617

Key words

Navigation