Skip to main content
Log in

Waves and instabilities in dusty space plasmas

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Astrophysical dust occurs in many circumstances, like interstellar and circumstellar media, and between and around planets and comets. Typical Solar System applications include planetary rings, asteroid zones, cometary comae and tails, and regions of Earth's lower magnetosphere. Dust grains immersed in ambient plasmas are electrically charged by various processes and interact with electromagnetic fields. Intriguing phenomena observed in the 1980s by Voyager cameras and attributed to charged dust are radial spokes in the B-ring and braids in the F-ring of Saturn. Collective effects become important when the dust intergrain distance is smaller than the plasma Debye length, and start from observations that micron-sized dust grains can have very high negative charges and in proportion even higher masses. Characteristic dust frequencies are considerably smaller than corresponding electron or ion quantities, giving rise to new low-frequency eigenmodes, which could explain some of the low-frequency noise in space and astrophysical plasmas. Repelling electrostatic forces between charged dust grains prevent planetary rings from collapsing to very thin sheets, and oscillations in transverse ring thickness give rise to resonant phenomena, held responsible for gaps in the rings of Jupiter and Saturn. Further features are connected with fluctuating dust charges, which imply highly nontrivial source and/or sink terms in the description, and those in turn lead to new electrostatic and electromagnetic instabilities. Many different papers are reviewed which discuss waves and instabilities in dusty space plasmas, both with fixed and variable dust charges, at the linear level and, at the nonlinear level, involving double layers, solitons, vortices and other waves. These studies are at present far ahead of what observations can corroborate, a situation not likely to change soon due to the paucity of coming solar system missions concerned with planetary or cometary phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1981, Cosmic Plasma, D. Reidel Publ. Co., Dordrecht, Holland, p. 118–121.

    Google Scholar 

  • Anderson, R. R. and Kurth, W. S.: 1989, ‘Ultra-Low Frequency Waves at Comets’, in B. T. Tsurutani and H. Oya (eds.), Plasma Waves and Instabilities at Comets and in Magnetospheres, Geophys. Monograph Series 53, AGU, Washington, 81–117.

    Google Scholar 

  • Aslaksen, T. K. and Havnes, O.: 1994, ‘Kinetic Theory for a Distribution of Ionized Dust Particles’, J. Plasma Phys. 51, 271–290.

    Google Scholar 

  • Avinash, K. and Sen, A.: 1994, ‘A Model for the Fine Structure of Saturn's Rings’, Phys. Letters A194, 241–245.

    Google Scholar 

  • Avinash, K. and Shukla, P. K.: 1994, ‘A Purely Growing Instability in a Gravitating Dusty Plasma’, Phys. Letters A189, 470–472.

    Google Scholar 

  • Bharuthram, R. and Shukla, P. K.: 1992a, ‘Large Amplitude Double Layers in Dusty Plasmas’, Planetary Space Sci. 40, 465–471.

    Google Scholar 

  • Bharuthram, R. and Shukla, P. K.: 1992b, ‘Vortices in Non-Uniform Dusty Plasmas’, Planetary Space Sci. 40, 647–654.

    Google Scholar 

  • Bharuthram, R. and Shukla, P. K.: 1992c, ‘Large Amplitude Ion-Acoustic Solitons in a Dusty Plasma’, Planetary Space Sci. 40, 973–977.

    Google Scholar 

  • Bharuthram, R. and Shukla, P. K.: 1993, ‘Low-Frequency Surface Waves on a Warm Dusty Plasma’, Planetary Space Sci. 41, 17–19.

    Google Scholar 

  • Bharuthram, R. and Rao, N. N.: 1995, ‘Self-Similar Expansion of a Warm Dusty Plasma -I. Unmagnetized Case’, Planetary Space Sci. 43, 1079–1085.

    Google Scholar 

  • Bharuthram, R., Saleem, H., and Shukla, P. K.: 1992, ‘Two-Stream Instabilities in Unmagnetized Dusty Plasmas’, Physica Scripta 45, 512–514.

    Google Scholar 

  • Bhatt, J. R. and Pandey, B. P.: 1994, ‘Self-Consistent Charge Dynamics and Collective Modes in a Dusty Plasma’, Phys. Rev. E50, 3980–3983.

    Google Scholar 

  • Bliokh, P. V. and Yaroshenko, V. V.: 1985, ‘Electrostatic Waves in Saturn's Rings’, Soviet Astron. 29, 330–336.

    Google Scholar 

  • Booker, H. G.: 1984, Cold Plasma Waves, Nijhoff, Dordrecht. 2–12.

    Google Scholar 

  • Chhajlani, R. K. and Parihar, A. K.: 1994, ‘Magnetogravitational Instability of Self-Gravitating Dusty Plasma’, Astrophys. J. 422, 746–750.

    Google Scholar 

  • Chow, V. W. and Rosenberg, M.: 1995, ‘Electrostatic Ion Cyclotron Instability in Dusty Plasmas’, Planetary Space Sci. 43, 613–618.

    Google Scholar 

  • d'Angelo, N.: 1967, ‘Recombination Instability’, Phys. Fluids 10, 719–723.

    Google Scholar 

  • d'Angelo, N.: 1990, ‘Low-Frequency Electrostatic Waves in Dusty Plasmas’, Planetary Space Sci. 38, 1143–1146.

    Google Scholar 

  • d'Angelo, N.: 1993, ‘The Rayleigh-Taylor Instability in Dusty Plasmas’, Planetary Space Sci. 41, 469–474.

    Google Scholar 

  • d'Angelo, N.: 1994, ‘Ion-Acoustic Waves in Dusty Plasmas’, Planetary Space Sci. 42, 507–511.

    Google Scholar 

  • d'Angelo, N. and Song, B.: 1990, ‘The Kelvin-Helmholtz Instability in Dusty Plasmas’, Planetary Space Sci. 38, 1577–1579.

    Google Scholar 

  • de Angelis, U.: 1992, ‘The Physics of Dusty Plasmas’, Physica Scripta 45, 465–474.

    Google Scholar 

  • de Angelis, U., Formisano, V. and Giordano, M.: 1988, ‘Ion Plasma Waves in Dusty Plasmas: Halley's Comet’, J. Plasma Phys. 40, 399–406.

    Google Scholar 

  • de Angelis, U., Bingham, R., and Tsytovich, V. N.: 1989, ‘Dispersion Properties of Dusty Plasmas’, J. Plasma Phys. 42, 445–456.

    Google Scholar 

  • de Angelis, U., Forlani, A., Tsytovich, V. N., and Bingham, R.: 1992, ‘Scattering of Electromagnetic Waves by a Distribution of Charged Dust Particles in Space Plasmas’, J. Geophys. Res. 97, 6261–6267.

    Google Scholar 

  • de Angelis, U., Forlani, A., Bingham, R., Shukla, P. K., Ponomarev, A., and Tsytovich, V. N.: 1994, ‘Damping and Absorption of High-Frequency Waves in Dusty Plasmas’, Phys. Plasmas 1, 236–244.

    Google Scholar 

  • Deconinck, B., Meuris, P., and Verheest, F.: 1993a, ‘Oblique Nonlinear Alfvén Waves in Strongly Magnetized Beam Plasmas. Part 1. Nonlinear Vector Evolution Equation’, J. Plasma Phys. 50, 445–455.

    Google Scholar 

  • Deconinck, B., Meuris, P., and Verheest, F.: 1993b, ‘Oblique Nonlinear Alfvén Waves in Strongly Magnetized Beam Plasmas. Part 2. Soliton Solutions and Integrability’, J. Plasma Phys. 50, 457–476.

    Google Scholar 

  • Ellis, T. A. and Neff, J. S.: 1991, ‘Numerical Simulation of the Emission and Motion of Neutral and Charged Dust from P/Halley’, Icarus 91, 280–296.

    Google Scholar 

  • Forlani, A., de Angelis, U., and Tsytovich, V. N.: 1992, ‘Waves in Dusty Plasmas’, Physica Scripta 45, 509–511.

    Google Scholar 

  • Goertz, C. K.: 1989, ‘Dusty Plasmas in the Solar System’, Rev. Geophys. 27, 271–292.

    Google Scholar 

  • Goertz, C. K. and Ip, W.-H.: 1984, ‘Limitations of Electrostatic Charging of Dust Particles in a Plasma’, Geoph. Res. Letters 11, 349–352.

    Google Scholar 

  • Grard, R., Pedersen, A., Trotignon, J.-G., Beghin, C., Mogilevsky, M., Mikhaïlov, Y., Molchanov, O., and Formisano, V.: 1986, ‘Observations of Waves and Plasma in the Environment of Comet Halley’, Nature 321, 290–291.

    Google Scholar 

  • Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. J., Fechtig, H., Forsyth, R., Hanner, M. S., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linken, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Phillips, J. L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P, Švestka, Z., and Taylor, A.: 1993, ‘Discovery of Jovian Dust Streams and Interstellar Grains by the Ulysses Spacecraft’, Nature 362, 428–430.

    Google Scholar 

  • Havnes, O.: 1980, ‘On the Motion and Destruction of Grains in Interstellar Clouds’, Astron. Astrophys. 90, 106–112.

    Google Scholar 

  • Havnes, O.: 1988, ‘A Streaming Instability Interaction Between the Solar Wind and Cometary Dust’, Astron. Astrophys. 193, 309–312.

    Google Scholar 

  • Houpis, H. L. F. and Whipple, E. C., Jr.: 1987, ‘Electrostatic Charge on a Dust Size Distribution in a Plasma’, J. Geophys. Res. 92, 12057–12068.

    Google Scholar 

  • James, C. R. and Vermeulen, F.: 1968, ‘A Microparticle Plasma’, Canadian J. Phys. 46, 855–863.

    Google Scholar 

  • Jana, M. R., Sen, A., and Kaw, P. K.: 1993, ‘Collective Effects Due to Charge-Fluctuation Dynamics in a Dusty Plasma’, Phys. Rev. E48, 3930–3933.

    Google Scholar 

  • Jana, M. R., Sen, A., and Kaw, P. K.: 1995, ‘Influence of Grain Charge Fluctuation Dynamics on Collective Modes in a Magnetized Dusty Plasma’, Physica Scripta 51, 385–389.

    Google Scholar 

  • Kaw, P. K.: 1992, ‘Non-Abelian Screening and Colour Oscillations in a Quark Gluon Plasma’, Plasma Phys. Contr. Fusion 34, 1795–1802.

    Google Scholar 

  • Klimov, S., Savin, S., Aleksevich, Ya., Avanesova, G., Balebanov, V, Balikhin, M., Galeev, A., Gribov, B., Nozdrachev, M., Smirnov, V, Sokolov, A., Vaisberg, O., Oberc, P., Krawczyk, Z., Grzedzielski, S., Juchniewicz, J., Nowak, K., Orlowski, D., Parfianovich, B., Woźniak, D., Zbyszynski, Z., Voita, Ya., and Triska, P.: 1986, ‘Extremely-Low-Frequency Plasma Waves in the Environment of Comet Halley’, Nature 321, 292–293.

    Google Scholar 

  • Lakshmi, S. V. and Bharuthram, R.: 1994, ‘Arbitrary Amplitude Rarefactive Dust-Acoustic Solitons’, Planetary Space Sci. 42, 875–881.

    Google Scholar 

  • Lakshmi, S. V, Bharuthram, R. and Yu, M. Y: 1993, ‘Nonlinear Potential Structures in a Dusty Plasma’, Astrophys. Space Sci. 209, 71–78.

    Google Scholar 

  • Li, F., Havnes, O., and Melandsø, F.: 1994, ‘Longitudinal Waves in a Dusty Plasma’, Planetary Space Sci. 42, 401–407.

    Google Scholar 

  • Lonngren, K. E.: 1990, ‘Expansion of a Dusty Plasma Into a Vacuum’, Planetary Space Sci. 38, 1457–1459.

    Google Scholar 

  • Luo, H. and Yu, M. Y: 1992, ‘Kinetic Theory of Self-Similar Expansion of a Dusty Plasma’, Phys. Fluids B4, 1122–1125.

    Google Scholar 

  • Ma, J.-X. and Yu, M. Y.: 1994a, ‘Self-Consistent Theory of Ion Acoustic Waves in a Dusty Plasma’, Phys. Plasmas 1, 3520–3522.

    Google Scholar 

  • Ma, J.-X. and Yu, M. Y.: 1994b, ‘Langmuir Wave Instability in a Dusty Plasma’, Phys. Rev. E50, R2431-R2434.

    Google Scholar 

  • Ma, J.-X. and Shukla, P. K.: 1995, ‘Compact Dispersion Relation for Parametric Instabilities of Electromagnetic Waves in Dusty Plasmas’, Phys. Plasmas 2, 1506–1509.

    Google Scholar 

  • Ma, J.-X., Shukla, P. K., and Yu, M. Y: 1995, ‘Nonlinear Dielectric Function of a Dusty Plasma in the Presence of Electromagnetic Fields’, Phys. Letters A198, 357–363.

    Google Scholar 

  • Mace, R. L. and Hellberg, M. A.: 1993a, ‘The Effects of Ion Inertia on Dust-Acoustic Double Layers’, in R. W. Schrittwieser (ed.), Double Layers and Other Nonlinear Potential Structures in Plasmas, World Scientific, Singapore, pp. 370–375.

    Google Scholar 

  • Mace, R. L. and Hellberg, M. A.: 1993b, ‘Dust-Acoustic Double Layers: Ion Inertial Effects’, Planetary Space Sci. 41, 235–244.

    Google Scholar 

  • Melandsø, F. and Havnes, O.: 1991, ‘Oscillations and Resonances in Electrostatically Supported Dust Rings’, J. Geophys. Res. 96, 5837–5845.

    Google Scholar 

  • Melandsø, F., Aslaksen, T. K., and Havnes, O.: 1993a, ‘A New Damping Effect for the Dust-Acoustic Wave’, Planetary Space Sci. 41, 321–325.

    Google Scholar 

  • Melandsø, F., Aslaksen, T. K., and Havnes, O.: 1993b, ‘A Kinetic Model for Dust Acoustic Waves Applied to Planetary Rings’, J. Geophys. Res. 98, 13315–13323.

    Google Scholar 

  • Mendis, D. A. and Rosenberg, M.: 1994, ‘Cosmic Dusty Plasma’, Ann. Rev. Astron. Astrophys. 32, 419–463.

    Google Scholar 

  • Mofiz, U. A., Islam, M., and Ahmed, Z.: 1993, ‘Nonlinear Propagation of Ion-Acoustic Waves and Lo-Frequency Modes in a Dusty Plasma’, J. Plasma Phys. 50, 37–44.

    Google Scholar 

  • Nambu, M., Shukla, P. K., and Vladimirov, S. V: 1993, ‘Plasma-Maser Instability in Dusty Plasmas’, Phys. Letters A180, 441–443.

    Google Scholar 

  • Northrop, T. G.: 1992, ‘Dusty Plasmas’, Physica Scripta 45, 475–490.

    Google Scholar 

  • Pandey, B. P., Avinash, K., and Dwivedi, C. B.: 1994, ‘Jeans Instability of a Dusty Plasma’, Phys. Rev. E49, 5599–5606.

    Google Scholar 

  • Pilipp, W, Hartquist, T. W, Havnes, O., and Morfill, G. E.: 1987, ‘The Effects of Dust on the Propagation and Dissipation of Alfvén Waves in Interstellar Clouds’, Astrophys. J. 314, 341–351.

    Google Scholar 

  • Popel, S. I. and Yu, M. Y: 1994, ‘Modulational Interaction of Short-Wavelength Ion-Acoustic Oscillations in Impurity-Containing Plasmas’, Phys. Rev. E50, 3060–3067.

    Google Scholar 

  • Popel, S. I. and Yu, M. Y: 1995, ‘Ion Acoustic Solitons in Impurity-Containing Plasmas’, Contrib. Plasma Phys. 35, 103–108.

    Google Scholar 

  • Raadu, M. A.: 1989, ‘The Physics of Double Layers and Their Role in Astrophysics’, Phys. Reports 178, 25–97.

    Google Scholar 

  • Rao, N. N.: 1993a, ‘Hydromagnetic Waves and Shocks in Magnetized Dusty Plasmas’, Planetary Space Sci. 41, 21–26.

    Google Scholar 

  • Rao, N. N.: 1993b, ‘Low-Frequency Waves in Magnetized Dusty Plasmas’, J. Plasma Phys. 49, 375–393.

    Google Scholar 

  • Rao, N. N.: 1993c, ‘Dust-Magnetoacoustic Waves in Magnetized Dusty Plasmas’, Phys. Scripta 48, 363–366.

    Google Scholar 

  • Rao, N. N.: 1995, ‘Magnetoacoustic Modes in a Magnetized Dusty Plasma’, J. Plasma Phys. 53, 317–334.

    Google Scholar 

  • Rao, N. N. and Bharuthram, R. N.: 1995, ‘Self-Similar Expansion of a Warm Dusty Plasma — II. Magnetized Case’, Planetary Space Sci. 43, 1087–1093.

    Google Scholar 

  • Rao, N. N. and Shukla, P. K.: 1994, ‘Nonlinear Dust-Acoustic Waves with Dust Charge Fluctuations’, Planetary Space Sci. 42, 221–225.

    Google Scholar 

  • Rao, N. N., Shukla, P. K., and Yu, M. Y: 1990, ‘Dust-Acoustic Waves in Dusty Plasmas’, Planetary Space Sci. 38, 543–546.

    Google Scholar 

  • Rawat, S. P. S. and Rao, N. N.: 1993, ‘Kelvin-Helmholtz Instability Driven by Sheared Dust Flow’, Planetary Space Sci. 41, 137–140.

    Google Scholar 

  • Reddy, R. V., Lakhina, G. S., Verheest, F., and Meuris, P.: 1996, ‘Alfvén Modes in Dusty Cometary and Planetary Plasmas’, Planetary Space Sci. 44, 129–135.

    Google Scholar 

  • Rosenberg, M.: 1993, ‘Ion- and Dust-Acoustic Instabilities in Dusty Plasmas’, Planetary Space Sci. 41, 229–233.

    Google Scholar 

  • Rosenberg, M. and Krall, N. A.: 1994, ‘High Frequency Drift Instabilities in a Dusty Plasma’, Planetary Space Sci. 42, 889–894.

    Google Scholar 

  • Rosenberg, M. and Krall, N. A.: 1995, ‘Modified Two-Stream Instabilities in Dusty Space Plasmas’, Planetary Space Sci. 43, 619–624.

    Google Scholar 

  • Sah, O. P. and Goswami, K. S.: 1994, ‘Theory of Weak Dust Acoustic Double Layers’, Phys. Letters A190, 317–322.

    Google Scholar 

  • Salahuddin, M: 1993, ‘Dust Acoustic Wave Instability’, Phys. Scripta 48, 478–480.

    Google Scholar 

  • Salimullah, M. and Sen, A.: 1992, ‘Low Frequency Response of a Dusty Plasma’, Phys. Letters A163, 82–86.

    Google Scholar 

  • Salimullah, M., Hassan, M. H. A., and Sen, A.: 1992, ‘Low-Frequency Electrostatic Modes in a Magnetized Dusty Plasma’, Phys. Rev. A45, 5929–5934.

    Google Scholar 

  • Shukla, P. K.: 1992, ‘Low-Frequency Modes in Dusty Plasmas’, Physica Scripta 45, 504–507.

    Google Scholar 

  • Shukla, P. K. and Rao, N. N.: 1993, ‘Vortex Structures in Magnetized Plasmas with Sheared Dust Flow’, Planetary Space Sci. 41, 401–403.

    Google Scholar 

  • Shukla, P. K. and Silin, V. P.: 1992, ‘Dust Ion-Acoustic Wave’, Physica Scripta 45, 508.

    Google Scholar 

  • Shukla, P. K. and Varma, R. K.: 1993, ‘Convective Cells in Nonuniform Dusty Plasmas’, Phys. Fluids B5, 236–237.

    Google Scholar 

  • Shukla, P. K., Yu, M. Y., and Bharuthram, R.: 1991, ‘Linear and Nonlinear Dust Drift Waves’, J. Geophys. Res. 96, 21343–21346.

    Google Scholar 

  • Shukla, P. K., Feix, G., and Rao, N. N.: 1993a, ‘Decay and Modulational Instabilities of Electron Plasma Waves in Unmagnetized Susty Plasmas’, Planetary Space Sci. 41, 693–695.

    Google Scholar 

  • Shukla, P. K., Varma, R. K., Krishan, V., and McKenzie, J. P.: 1993b, ‘Alfvén Vortices in Nonuniform Dusty Magnetoplasmas’, Phys. Rev. E47, 750–752.

    Google Scholar 

  • Smith, B. A., Soderblom, L., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A., Hansen, C. J., Johnson, T. V., Mitchell, J. L., Terrile, R. J., Carr, M., Cook, A. F., II, Cuzzi, J., Pollack, J. B., Danielson, G. E., Ingersoll, A., Davies, M. E., Hunt, G. E., Masursky, H., Shoemaker, E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V. E.: 1981, ‘Encounter with Saturn: Voyager 1 Imaging Science Results’, Science 212, 163–191.

    Google Scholar 

  • Smith, B. A., Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H., Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A., Hansen, C. J., Johnson, T. V, Mitchell, J. L., Terrile, R. J., Cook, A. F., II, Cuzzi, J., Pollack, J. B., Danielson, G. E., Ingersoll, A., Davies, M. E., Hunt, G. E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V. E.: 1982, ‘A New Look at the Saturn System: The Voyager 2 Images’, Science 215, 504–537.

    Google Scholar 

  • Spitzer, L.: 1941, ‘The Dynamics of the Interstellar Medium. I. Local Equilibrium’, Astrophys. J. 93, 369–379.

    Google Scholar 

  • Stix, T. H.: 1962, The Theory of Plasma Waves, McGraw-Hill, New York. 33–42.

    Google Scholar 

  • Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B., and Möhlmann, D.: 1994, ‘Plasma Crystal: Coulomb Crystallization in a Dusty Plasma’, Phys. Rev. Letters 73, 652–655.

    Google Scholar 

  • Tsytovich, V. N. and Havnes, O.: 1993, ‘Charging Processes, Dispersion Properties and Anomalous Transport in Dusty Plasmas’, Comm. Plasma Phys. Contr. Fusion 15, 267–280.

    Google Scholar 

  • Tsytovich, V. N., Morfill, G. E., Bingham, R., and de Angelis, U.: 1990, ‘Dusty Plasmas (Capri Workshop, May 1989)’, Comm. Plasma Phys. Contr. Fusion 13, 153–162.

    Google Scholar 

  • Varma, R. K. and Shukla, P. K.: 1995a, ‘Linear and Nonlinear Rayleigh-Taylor Modes in Nonuniform Dusty Magnetoplasmas’, Physica Scripta 51, 522–525.

    Google Scholar 

  • Varma, R. K. and Shukla, P. K.: 1995b, ‘A New Dust-Dynamics-Induced Interchange Instability in Dusty Plasmas’, Phys. Letters A196, 342–345.

    Google Scholar 

  • Varma, R. K., Shukla, P. K., and Krishan, V: 1993, ‘Electrostatic Oscillations in the Presence of Grain-Charge Perturbations in Dusty Plasmas’, Phys. Rev. E47, 3612–3616.

    Google Scholar 

  • Verheest, F.: 1967, ‘General Dispersion Relations for Linear Waves in Multicomponent Plasmas’, Physica 34, 17–35.

    Google Scholar 

  • Verheest, F.: 1990, ‘Nonlinear Parallel Alfvén Waves in Cometary Plasmas’, Icarus 86, 273–282.

    Google Scholar 

  • Verheest, F.: 1992a, ‘Parallel Solitary Alfvén Waves in Warm Multispecies Beam-Plasma Systems. Part 2. Anisotropic Pressures’, J. Plasma Phys. 47, 25–37.

    Google Scholar 

  • Verheest, F.: 1992b, ‘Nonlinear Dust-Acoustic Waves in Multispecies Dusty Plasmas’, Planetary Space Sci. 40, 1–6.

    Google Scholar 

  • Verheest, F.: 1993a, ‘Double Layers and Solitons in Dusty Plasmas’, in R. W. Schrittwieser (ed.), Double Layers and Other Nonlinear Potential Structures in Plasmas, World Scientific, Singapore, pp. 162–173.

    Google Scholar 

  • Verheest, F.: 1993b, ‘Are Weak Dust-Acoustic Double Layers Adequately Described by Modified Korteweg-de Vries Equations?’, Phys. Scripta 47, 274–277.

    Google Scholar 

  • Verheest, F.: 1994a, ‘Nonlinear Dust Alfvén Modes’, Space Sci. Rev. 68, 109–114.

    Google Scholar 

  • Verheest, F.: 1994b, ‘Charge Fluctuation Instabilities in Dusty Plasmas’, Proc. 1994 Int. Conf. Plasma Phys. 2, 286–289.

    Google Scholar 

  • Verheest, F and Buti, B.: 1992, ‘Parallel Solitary Alfvén Waves in Warm Multispecies Beam-Plasma Systems. Part I’, J. Plasma Phys. 47, 15–24.

    Google Scholar 

  • Verheest, F. and Meuris, P.: 1995, ‘Whistler-Like Instabilities Due to Charge Fluctuations in Dusty Plasmas’, Phys. Letters A198, 228–232.

    Google Scholar 

  • Vladimirov, S.V.: 1994a, ‘Amplification of Electromagnetic Waves in Dusty Nonstationary Plasmas’, Phys. Rev. E49, R997-R999.

    Google Scholar 

  • Vladimirov, S. V: 1994b, ‘Propagation of Waves in Dusty Plasmas with Variable Charges on Dust Particles’, Phys. Plasmas 1, 2762–2767.

    Google Scholar 

  • Whipple, E. C., Northrop, T. G., and Mendis, D. A.: 1985, ‘The Electrostatics of a Dusty Plasma’, J. Geoph. Res. 90, 7405–7413.

    Google Scholar 

  • Winske, D., Gary, S. P., Jones, M. E., Rosenberg, M., Chow, V. W, and Mendis, D. A.: 1995, ‘Ion Heating in a Dusty Plasma Due to the Dust/Ion Acoustic Instability’, Geophys. Res. Letters 22, 2069–2072.

    Google Scholar 

  • Yinhua, C. and Yu, M. Y: 1994a, ‘Exact Ion Acoustic Solitary Waves in an Impurity-Containing Magnetized Plasma’, Phys. Plasmas 1, 1868–1870.

    Google Scholar 

  • Yinhua, C. and Yu, M. Y: 1994b, ‘Fully Nonlinear Dust Acoustic Solitary Waves in a ImpurityContaining Magnetized Plasma’, Physica Scripta 50, 298–300.

    Google Scholar 

  • Yu, M. Y. and Bharuthram, R.: 1994, ‘Self-Similar Cylindrical Expansion of Impurity Particles in a Plasma’, J. Plasma Phys. 52, 345–352.

    Google Scholar 

  • Yu, M. Y and Luo, H.: 1995, ‘Adiabatic Self-Similar Expansion of Dust Grains in a Plasma’, Phys. Plasmas 2, 591–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verheest, F. Waves and instabilities in dusty space plasmas. Space Sci Rev 77, 267–302 (1996). https://doi.org/10.1007/BF00226225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226225

Keywords

Navigation