Skip to main content
Log in

Mycelial fragment size distribution: an analysis based on fractal geometry

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of white-rot fungi for biodegradative research and developmental application requires seeding with a suitable inoculum. This paper presents a new method for the quantitative analysis of a mycelial inoculum composed of homogenized hyphal fragments. Our method is premised on a power-law behaviour between frequency and the size of these mycelial fragments. It is shown that the fragment distribution profile can be determined by regression to give the fractal fragmentation dimension, D. The influence of homogenizer speed was also investigated over a range from 8333 rpm to 25 000 rpm, which corresponds to a shear rate range of 13.9 × 103 to 41.7 × 103 s−1. The highest D value was shown at a shear rate of 27.8 × 103 s−1 for 30 s, implying greatest homogeneity in the size distribution function over the measured range (0–500 μm2). As shear force and duration increases (up to a threshold value) the production of small fragments is facilitated with a corresponding decrease in the D value. The slope relation express the fragment diversity whereas the reciprocal fractal valie characterizes the distribution size probability. Image-analysis methodology is described and the implications of a fractal description of a mycelial inoculum are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb Ecol 20:197–209

    Google Scholar 

  • Agosín E, Odier E (1985) Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi. Appl Microbiol Biotechnol 21:397–403

    Google Scholar 

  • Brown WK (1986) Universal fragmentation. Astrophys Space Sci 121:351–355

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150

    Google Scholar 

  • Burrough PA (1989) Fractals and Geochemistry. In: Avnir D (ed) The fractal approach to heterogeneous chemistry — surgaces, colloids, polymers. Wiley, Chichester, p 391

    Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    Google Scholar 

  • Cornwell KL, Tinland-Butez M-F, Tardone PJ, Cabasso I, Hammel KE (1990) Lignin degradation and lignin peroxidase production in cultures of Phanerochaete chrysosporium immobilized on porous ceramic supports. Enzyme Microb Technol 12:916–920

    Google Scholar 

  • Davis DR, Ryan EV (1990) On collisional disruption: experimental results and scaling laws. Icarus 83:156–182

    Google Scholar 

  • Feder J, Jøssang T (1985) A reversible reaction limited step in irreversible immunoglobulin aggregation. In: Pynn R, Skjeltorp A (eds) Scaling phenomena in disordered systems. NATO ASI Series B, Physics; vol 133. Plenum Press, New York, pp 99–131

    Google Scholar 

  • Frontier S (1987) Applications of fractal theory to ecology. In: Legendre P, Legendre L (eds) Developments in numerical ecology. NATO ASI G14. Springer, Berlin Heidelberg New York, p 335

    Google Scholar 

  • Fuhrer B (1985) A field companion to Australian fungi. Five Mile Press, Hawthorn, Victoria, Australia, p 127

    Google Scholar 

  • Glaser JA (1990) Hazardous waste degradation by wood degrading fungi. In: Kamely D, Chakrabarty A, Omenn GS (eds) Biotechnology and biodegradation. Gulf Publishing, Houston, pp 267–284

    Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747

    Google Scholar 

  • Gonzalez RC, Wintz P (1987) Digital image processing, 2nd edn. Addison-Wesley, Reading, Mass., pp 190–193

    Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    Google Scholar 

  • Hastings HM, Pekelney R, Monticciolo R, Kannon Vun D, Monte del D (1982) Time scales, persistence and patchiness. Biosystems 15:281–289

    Google Scholar 

  • Hegde SG, Lokesha R, Ganeshaiah KN (1991) Seed size distribution in plants: an explanation based on fractal geometry. Oikos 62:100–101

    Google Scholar 

  • Jäger A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50:1274–1278

    Google Scholar 

  • Jähne B (1991) Digital image processing — concepts, algorithms and scientific applications. Springer, Berlin Heidelberg New York, pp 194

    Google Scholar 

  • Jones CL, Lonergan GT, Mainwaring DE (1992) The use of image analysis for spore counts of white-rot fungi. Biotechnol Tech 6:417–423

    Google Scholar 

  • Jones P, Batool A, Shahab A, Trinci APJ, Moore D (1988) Effect of polymeric additives, especially Junlon and Hostacerin, on growth of some basidiomycetes in submerged culture. Trans Br Mycol Soc 90:577–583

    Google Scholar 

  • Kaye BH (1987) Fine particle characterization aspects of predictions affecting the efficiency of microbiological mining techniques. Powder Technol 50:177–191

    Google Scholar 

  • Kaye BH (1989) A random walk through fractal dimensions, 1st edn. VCH, Weinheim

    Google Scholar 

  • Kirk TK, Croan S, Tien M (1986) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8:27–32

    CAS  PubMed  Google Scholar 

  • Korčak J (1940) Deux types fondamentaux de distribution statistique. Bull Inst Int Stat 30:295–299

    Google Scholar 

  • Lechevalier HA, Roisen FJ (1989) Stains for light microscopy. In: O'Leary W (ed) Practical handbook of microbiology. CRC Press, Boca Raton, Fla. p 317

    Google Scholar 

  • Lewandowski GA, Armenante PM, Pak D (1990) Reactor design for hazardous waste treatment using a white rot fungus. Water Res 24:75–82

    Google Scholar 

  • Linko S (1988) Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chrysosporium in a 10–1 bioreactor. Enzyme Microb Technol 10:410–417

    Google Scholar 

  • Macdonald R, Westerman J (1979) A field guide to fungi of South-Eastern Australia. Thomas Nelson, Melbourne, Australia, p 112

    Google Scholar 

  • Mandelbrot BB (1975) Stochastic models for the earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc Natl Acad Sci USA 72:3825–3828

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Review edn of Fractals (1977). Freeman, New York

    Google Scholar 

  • Matsushita M (1985) Fractal viewpoint of fracture and accreation. J Phys Soc Jpn 54:857–860

    Google Scholar 

  • Montroll EW, Shlesinger MF (1982) On 1/f noise and other distributions with long tails. Proc Natl Acad Sci USA 79:3380–3383

    Google Scholar 

  • Nishida T, Kashino Y, Mimura A, Takahara Y (1988) Lignin biodegradation by wood-rotting fungi I. Screening of lignin-degrading fungi. Mokuzai Gakkaishi 34:530–536

    Google Scholar 

  • Pynn R, Skjeltorp A (eds) (1985) Scaling phenomena in disordered systems. NATO ASI Series B, Physics, vol 133. Plenum Press, New York

    Google Scholar 

  • Raan AFJ van (1990) Fractal dimension of co-citations. Nature 347:626

    Google Scholar 

  • Ryan EV, Hartmann WK, Davis DR (1991) Impact experiments 3: catastrophic fragmentation of aggregate targets and relation to asteroids. Icarus 94:283–298

    Google Scholar 

  • Scholz CH, Mandelbrot BB (eds) (1989) Fractals in geophysics. Birkhauser, Boston

    Google Scholar 

  • Solomons GL (1975) Submerged culture production of mycelial biomass. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 1. Industrial mycology. Edward Arnold, London, pp 249–264

    Google Scholar 

  • Sugihara G, May RM (1990) Applications of fractals in ecology. TREE (Trends in Ecology and Evolution) 5:79–86

    CAS  Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921–1926

    Google Scholar 

  • Venkatadri R, Irvine RL (1990) Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 56:2684–2691

    Google Scholar 

  • Voss RF, Laibowitz RB, Allessandrini EI (1982) Fractal (scaling) clusters in thin gold films near the percolation threshold. Phys Rev Lett 49:1441–1448

    Google Scholar 

  • Voss RF, Laibowitz RB, Allessandrini EI (1985) Fractal geometry of percolation in thin gold films. In: Pynn R, Skjeltorp A (eds) Scaling phenomena in disordered systems. NATO ASI Series B, Physics; vol 133. Plenum Press, New YOrk

    Google Scholar 

  • Zipf GK (1949) Human behavior and the principle of least effort —an introduction to human ecology. Hafner Publishing Company, New York (reprinted 1965)

    Google Scholar 

  • Zweck S, Hüttermann A, Chet I (1978) A convenient method for preparing inocula of homogenized mycelia. Exp Mycol 2:377–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C.L., Lonergan, G.T. & Mainwaring, D.E. Mycelial fragment size distribution: an analysis based on fractal geometry. Appl Microbiol Biotechnol 39, 242–249 (1993). https://doi.org/10.1007/BF00228613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228613

Keywords

Navigation