Skip to main content
Log in

Equilibrium theory of the planetary boundary layer with an inversion lid

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The maintenance of an elevated inversion in steady flow above a cold, rotating surface is shown to be possible for a certain range of the ‘buoyancy number’ bfV g, where b is the buoyant acceleration appropriate to the density deficiency of the fluid above the inversion, f is Coriolis parameter and V gis geostrophic velocity (so that fV gis also horizontal pressure gradient in kinematic units). The height of the inversion lid is determined by a balance of surface stress and buoyancy, in a way which may be deduced from laboratory experiments. With the aid of such empirical evidence a theory is constructed for the layer below the inversion lid. The cross-isobar angle of ground-level stress is found to increase with the buoyancy number, to a limiting value of 90‡, by which time the inversion descends to the ground. Under typical conditions, a temperature difference of order 10‡C is necessary to eliminate the possibility of an equilibrium, elevated inversion lid and reduce ground level wind stress to a vanishingly small value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson, C. S.: 1970, Ice Fog, Weather 25, 11–18.

    Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1968, Asymptotic similarity in neutral barotropic planetary boundary layers, J. Atmospheric Sci. 25, 1015–1020.

    Google Scholar 

  • Chow, Ven Te: 1959, Open Channel Hydraulics. McGraw Hill Book Co.

  • Clarke, R. H.: 1970, ‘Observational studies in the atmospheric boundary layer’, Quart. J. Roy. Met. Soc. 96, 91–114.

    Google Scholar 

  • Clauser, F. H.: 1956, The turbulent boundary layer, Adv. Appl. Mech. 4, 1–51.

    Google Scholar 

  • Csanady, G. T.: 1967, On the resistance law of a turbulent Ekman Layer, J. Atmos. Sci. 24, 467–471.

    Google Scholar 

  • Csanady, G. T.: 1972a, Geostrophic drag, heat and mass transfer coefficients for the diabatic Ekman Layer, J. Atmos. Sci. 29, 488–496.

    Google Scholar 

  • Csanady, G. T.: 1972b, Frictional Currents in the mixed layer at the Sea Surface, J. Phys. Oceanogr. 2, 498–508.

    Google Scholar 

  • Csanady, G. T.: 1972c, The coastal boundary layer in Lake Ontario, pt. I, the spring regime, J. Phys. Oceanogr. 2, 41–53.

    Google Scholar 

  • Ellison, T. H. and Turner, J. S.: 1959, Turbulent entrainment in stratified flows, J. Fluid Mech. 6, 423–448.

    Google Scholar 

  • Geisler, J. E. and Kraus, E. B.: 1969, The well-mixed Ekman boundary-layer, Deep Sea Res. Suppl. to Vol. 16, 73–84.

    Google Scholar 

  • Gonella, J.: 1971, The drift current from observations made on the Bouée Laboratoire, Cahiers Oceanogr. 23, 19–33.

    Google Scholar 

  • Hanna, S. R.: 1969, Characteristics of Winds and Turbulence in the planetary Boundary-Layer. U.S. Dept of Comm. ESSA Air Resources Laboratory Tech. Memo. No. 8, 61 pp.

    Google Scholar 

  • Kato, H. and Phillips, O. M.: 1969, On the penetration of a turbulent layer into stratified fluid, J. Fluid Mech 37, 643–655.

    Google Scholar 

  • Kraus, E. B.: 1968, What we do not know about the sea surface wind stress, Bull. Am. Meteorol. Soc. 49, 247–253.

    Google Scholar 

  • Lettau, H. H.: 1962, Theoretical wind spirals in the boundary-layer of a barotropic atmosphere, Beiträge Phys. Atmos. 35, 195–212.

    Google Scholar 

  • Lofquist, K.: 1960, Flow and stress near an interface between stratified liquids, Phys. Fluids 3, 158–175.

    Google Scholar 

  • Monin, A. S.: 1970, The atmospheric boundary-layer, Annual Rev. Fluid Mech. 2, 225–250.

    Google Scholar 

  • Moore, M. J. and Long, R. R.: 1971, An experimental investigation of turbulent stratified shearing flow, J. Fluid Mech. 49, 635–656.

    Google Scholar 

  • Plate, E. J.: 1971, ‘Aerodynamic Characteristics of Atmospheric Boundary-Layers’. AEC critical review series, US Atomic Energy Commission Division of Technical Information, 190 pp.

  • Pollard, R. T., Rhines, P. B., and Thompson, R. O. R. Y.: 1972, ‘The deepening of the wind-mixed layer’. Contr. No. 2789, Woods Hole Oceanogr. Inst.

  • Ragotzkie, R. A.: 1962, Effect of air stability on the development of wind waves on lakes, Limnol. and Ocean 7, 248–251.

    Google Scholar 

  • Schlichting, H.: 1960, Boundary-Layer Theory, McGraw Hill Book Co., 647 pp.

  • Thompson, R. O. R. Y.: 1972, ‘Stratified Ekman Boundary Layer Models — Bottom and Top’, Woods Hole Oceanogr. Inst.

  • Turner, J. S.: 1968, The influence of molecular diffusivity on turbulent entrainment across a density interface, J. Fluid Mech. 33, 639–656.

    Google Scholar 

  • Venkatesh, S. and Csanady, G. T.: 1973, A baroclinic Ekman Layer Model, University of Waterloo, Ontario, Canada.

    Google Scholar 

  • Woods, J. D.: 1968, Wave-induced shear instability in the summer thermocline, J. Fluid Mech. 32, 791–800.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Woods Hole Oceanographic Institution Contribution #3011

On leave from the University of Waterloo, Ontario

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csanady, G.T. Equilibrium theory of the planetary boundary layer with an inversion lid. Boundary-Layer Meteorol 6, 63–79 (1974). https://doi.org/10.1007/BF00232477

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232477

Keywords

Navigation