Skip to main content
Log in

Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyser as judged by frequency analysis is lower than for the vestibular analyser. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthoz, A., Pavard, B., Young, L.R.: Rôle de la vision périphérique et interactions visuo-vestibulaires dans la perception exocentrique du mouvement linéaire chez l'homme. C.R. Acad. Sci. (Paris) 278, D, 1605–1608 (1974)

    Google Scholar 

  • Brandt, Th., Wist, E., Dichgans, J.: Optisch induzierte Pseudo Coriolis-Effecte und Circularvektion. Arch. Psychiat. Nervenkr. 214, 365–389 (1971)

    Google Scholar 

  • Brandt, Th., Dichgans, J., Koenig, B.: Perception of self-rotation induced by optokinetic stimuli. Pflügers Arch. 332, R98 (1972)

    Google Scholar 

  • Brandt, Th., Dichgans, J., Koenig, E.: Differential effects of central and peripheral vision for egocentric and exocentric motion perception. Exp. Brain Res. 16, 476–491 (1973)

    Google Scholar 

  • Clark, B.: The oculogravic illusion as a test of otolith function. In: Third Symp. on the role of the vestibular organs in the exploration of space. NASA SP 152, 331–339 (1968)

  • Clark, B., Graybiel, A.: Apparent rotation of a fixed target associated with linear acceleration in flight. Amer. J. Ophthal. 32, 549–557 (1949)

    Google Scholar 

  • Daniel, K.: Der Einfluß der Reizmarkengröße auf die Lichtunterschiedsempfindlichkeit der Netzhaut bei verschiedenen Adaptationszuständen. Inaugural dissertation. Tübingen. (1959). In: Handbook of sensory physiology: visual psychophysics, p. 126–127. (ed Jameson, D., Hurvich, L.M.). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Denton, G.C.: The influence of visual pattern on perceived speed, p. 409–420. Crowthorne, G.B.L.R.: Road Research Laboratory Report 1971

    Google Scholar 

  • Dichgans, J., Brandt, Th.: The psychophysics of visually induced perception of self-motion and tilt. In: The Neurosciences III, p. 123–129. MIT Press 1974

  • Dichgans, J., Held, R., Young, L., Brandt, Th.: Moving visual scenes influence the apparent direction of gravity. Science 178, 1217–1219 (1972)

    Google Scholar 

  • Dichgans, J., Schmidt, C.L., Graf, W.: Visual input improves the speedometer function of the vestibular nuclei of the goldfish. Exp. Brain Res. 18, 319–322 (1973)

    Google Scholar 

  • Fischer, M.H., Kornmüller, A.E.: Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J. Pscyhol. Neurol. (Lpz.) 41, 383–420 (1930)

    Google Scholar 

  • Gibson, J.: The visual perception of objective motion and subjective movement. Psychol. Rev. 61, 304–314 (1954)

    Google Scholar 

  • Graybiel, A.: Oculogravic Illusion. Arch. Ophthal. 48, 605–615 (1952)

    Google Scholar 

  • Henn, V., Young, R.L., Finley, C.: Vestibular units in alert monkeys are also influenced by moving visual fields. Brain Res. 71, 144–149 (1974)

    Google Scholar 

  • Jongkees, L.B.W.: On the otoliths: their function and the way to test them. In: Third Symposium on the role of vestibular organs in space exploration. 1967. NASA SP 152, 307–331 (1968)

  • Lee, D.N., Aronson, E.: Visual proprioceptive control of standing in human infants. Perception and psychophysics 15, 529–532 (1974)

    Google Scholar 

  • Lishman, J.R., Lee, D.N.: The autonomy of visual kinaesthesis. Perception 2, 287–294 (1973)

    Google Scholar 

  • Lipetz, L.E.: The Creation of physiological and psychological aspects of sensory intensity. In: Handbook of Sensory Physiology, Vol. I, p. 191–225. (ed. Loewenstein, W.). BerlinHeidelberg-New York: Springer1971

    Google Scholar 

  • Mach, E.: Grundlinien der Lehre von den Bewegungsempfindungen, 129 pp. Leipzig: Engelann 1875

    Google Scholar 

  • Maekawa, A., Simpson, J.: Climbing fiber activation of Purkinge cells in the flocculus by impulses transferred through the visual pathways. Brain Res. 39, 245–251 (1972)

    Google Scholar 

  • Salvatore, S.: Velocity sensing. Highway Res. Record 282, 79–90 (1968)

    Google Scholar 

  • Schmidt, F., Tiffin, J.: Distortion of drivers' estimates of automobile speed as a function of speed adaptation. J. appl. Psychol. 53, 536–539 (1969)

    Google Scholar 

  • Schöne, H., Mortag, H.G.: Variation of the subjective vertical on the parallel swing at different body positions. Psychol. Forsch. 32, 124–134 (1968)

    Google Scholar 

  • Sharpe, C.R., Tolhurst, D.J.: Orientation and spatial frequency channels in peripheral vision. Vision Res. 13, 2103–2112 (1973)

    Google Scholar 

  • Udo de Haes, H.A., Schöne, H.: The effectiveness of the statolith organs in human spatial orientation. Acta oto-laryng. (Stockh.) 69, 25–31 (1970)

    Google Scholar 

  • Young, L.R.: On visual-vestibular interaction. In: 5th Symposium: The role of the vestibular organs in space exploration (Pensacola). NASA SP 314, 205–210 (1970)

    Google Scholar 

  • Young, L.R., Meiry, J.L.: A revised dynamic otolith model. Aerospace Med. 39, 606 (1965)

    Google Scholar 

  • Young, L.R., Dichgans, J., Murphy, R., Brandt, Th.: Interaction of optokinetic and vestibular stimuli in motion perception. Acta oto-laryng. (Stockh.) 76, 24–31 (1973)

    Google Scholar 

  • Young, L.R., Henn, V.S.: Selective habituation of vestibular nystagmus by visual stimulation. Acta oto-laryng. (Stockh.) 77, 159–166 (1974)

    Google Scholar 

  • Young, L.R., Oman, C.: Influence of head position and field on visually induced motion effects in three axes of rotation. In: Proc. of 10th Annual Conference in Manual Control Wright Patterson AFB, (Ohio) (1974)

  • Young, L.R., Oman, C., Dichgans, J.: Influence of head orientation on visually induced pitch and roll sensation. Aviation and Environmental Medecine 46, 264–268 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Preliminary reports of this work have been presented in the form of a short communication (Berthoz et al., 1974) and at the European Brain and Behaviour Society Workshop on: “Vestibular function and behaviour” (Pavia, Brain Research, Special issue, p. 17, 1974).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthoz, A., Pavard, B. & Young, L.R. Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Exp Brain Res 23, 471–489 (1975). https://doi.org/10.1007/BF00234916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234916

Key words

Navigation