Skip to main content
Log in

Three-dimensional elastic stress analysis of a fracture specimen with an edge crack

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

A numerical stress analysis of an elastic three-dimensional specimen similar to the compact tension specimen used in fracture investigations is presented. The numerical results are achieved using singular integral equations which are analogous to Green's boundary formula in potential theory. The analysis yields details of the stresses near the crack tip and clearly shows their three-dimensional character. Some results are also given to indicate the influence of thickness and Poisson's ratio on the stresses.

Résumé

On présente une analyse numérique des contraintes dans une éprouvette à trois dimensions en sollicitation dans le domaine élastique, éprouvette similaire à l'éprouvette de traction utilisée dans les études de mécanique de rupture.

Les résultats numériques sont obtenus en recourant à des équations à intégrales singulières, qui sont analogues à l'équation aux limites de Green dans la théorie du potentiel.

L'analyse conduit à fournir la distribution complète des contraintes au voisinage de l'éxtremité de la fissure et démontre clairement le caractère tridimensionnel de celle-ci.

L'influence de l'épaisseur et du module de Poisson sur les contraintes est également dégagée de certains résultats qui ont été obtenus.

Zusammenfassung

Es wird für eine dreidimensionale elastische Probe, ähnlich der kompakten Zugprobe für Bruchuntersuchungen, eine zahlenmässige Analyse der Spannungen dargelegt. Die numerischen Ergebnisse wurden über singulare Integralgleichungen analog den Greenschen Formeln in der Potentialtheorie ermittelt. Die Untersuchung ergibt Einzelheiten über die Spannungen in der Umgebung der Rißspitze und zeigt klar deren dreidimensionalen Charakter. Es werden auch einige Resultate mitgeteilt die den Einfluß der Dicke und des Poissonschen Moduls auf die Spannungen herausstellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sternberg, Three-Dimensional Stress Concentrations in the Theory of Elasticity, Applied Mechanics Reviews 11, 1, (1968).

    Google Scholar 

  2. J. B. Alblas, Theory of the Three-Dimensional State of Stress in a Plate with a Hole, H. J. Paris (Amsterdam) (1957).

    Google Scholar 

  3. R. J. Hartranft and G. C. Sih, The Use of Eigenfunction Expansions in the General Solution of Three-Dimensional Crack Problems, J. Math. Mech., 19 (1969) 123.

    Google Scholar 

  4. R. J. Hartranft and G. C. Sih, An Approximate Three-Dimensional Theory of Plates with Application to Crack Problems, Technical Report No. 7, Lehigh University Institute of Research, (May 1968).

  5. J. H. Argyris, Matrix Analysis of Three-Dimensional Elastic Media, Small and Large Displacements, AIAA Jnl. 3 (1965) 45.

    Google Scholar 

  6. D. J. Ayres, A Numerical Procedure for Calculating Stress and Deformation Near a Slit in a Three-Dimensional Elastic-Plastic Solid, NASA Report TM X-52440 (1968).

  7. P. C. Paris and G. C. Sih, Stress Analysis of Cracks, in Fracture Toughness Testing and Its Applications, ASTM STP 381, Amer. Soc. for Testing and Materials, Philadelphia (1964).

  8. M. L. Williams, Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension, J. Appl. Mech., 19 (1952) 526.

    Google Scholar 

  9. M. L. Williams, On the Stress Distribution at the Base of a Stationary Crack, J. Appl. Mech., 24 (1957) 109.

    Google Scholar 

  10. H. M. Westergaard, Bearing Pressures and Cracks, J. Appl. Mech. 61 (1939) 49.

    Google Scholar 

  11. B. Gross, J. E. Srawley and W. F. Brown, Jr., Stress-Intensity Factors by Boundary Collocation for Single-Edge-Notch Specimens Subject to Splitting Forces, NASA TN D-2395 (February 1966).

  12. L. E. Hulbert, The Numerical Solution of Two-Dimensional Problems of the Theory of Elasticity, Bulletin 198, Engineering Experiment Station, Ohio State University.

  13. F. J. Rizzo, An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics, Q. Appl. Math. 25 (1967) 83.

    Google Scholar 

  14. T. A. Cruse and F. J. Rizzo, A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem—I, J. Math. Anal. Appl. 22 (1968) 244.

    Google Scholar 

  15. T. A. Cruse, A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem—II, J. Math. Anal. Appl., 22 (1968) 341.

    Google Scholar 

  16. F. J. Rizzo and D. J. Shippy, A Formulation and Solution Procedure for the General Non-Homogeneous Elastic Inclusion Problem, Int. J. Solids Struct., 4 (1968) 1161.

    Google Scholar 

  17. T. A. Cruse, Numerical Solutions in Three-Dimensional Elastostatics, Int. J. Solids Struct., 5 (1969) 1259.

    Google Scholar 

  18. S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press (1965).

  19. S. K. Chan, I. S. Tuba and W. K. Wilson, On the Finite Element Method in Linear Fracture Mechanics, Scientific Paper 68–1D7-FMPWR-P1, Westinghouse Research Laboratories, Pittsburgh, Pa., (April 1968).

    Google Scholar 

  20. M. M. Leven, Stress Distribution in the M4 Biaxial Fracture Specimen, Research Report 65–1D7-STRSS-R1, Westinghouse Research Laboratories, Pittsburgh, Pa., (March 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruse, T.A., Vanburen, W. Three-dimensional elastic stress analysis of a fracture specimen with an edge crack. Int J Fract 7, 1–15 (1971). https://doi.org/10.1007/BF00236479

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236479

Keywords

Navigation