Skip to main content
Log in

Innervation of the avian pineal organ

A comparative study

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The innervation of the pineal organ was studied in 26 avian species under particular consideration of comparative aspects. A population of nerve cells and their pinealofugal (afferent) fiber systems were stained by means of the acetylcholinesterase method, while catecholamine-containing pinealopetal (efferent) fibers were demonstrated with the use of the glyoxylic acid method. Afferent axons were mainly found in the postero-proximal portion of the organ, and the patterns of their distribution were classified into three groups according to the characteristic densities of the reaction product. The number of acetylcholinesterase-positive neurons in the avian pineal organs examined in this study varied extremely from species to species, ranging from 0 to 362.

Catecholamine-containing nerve fibers penetrating the antero-lateral walls of the pineal follicles accompanied blood vessels and were arranged more densely in the distal portion of the organ, in contrast to the distribution of the acetylcholinesterase-positive nerve fibers. Three-dimensional reconstruction of the distributional patterns of both types of neural projections was performed for the pineal organ of every avian species examined. In avian species possessing a relatively conspicuous afferent projection, such as Passeriformes, Nycticorax, and Milvus, terminals of catecholamine-containing nerve fibers were observed exclusively in the interfollicular and perivascular tissues. In Galliformes, which display only few pineal afferents, catecholamine-containing fibers terminate not only in the interfollicular space, but also in the neuroepithelial parenchyma.

The regional differences in the innervation in the avian pineal organ suggest that the pinealocytes ranging from more sensory-like to more secretory-like elements are arranged in a mosaic-like pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod J, Wurtman RJ, Winget CM (1964) Melatonin synthesis in the hen pineal gland and its control by light. Nature 201:1134

    Google Scholar 

  • Axelsson S, Björklund A, Falck B, Lindvall O, Svensson LA (1973) Glyoxylic acid condensation: A new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol Scand 87:57–62

    Google Scholar 

  • Binkley SA, Riebman JB, Reilly KB (1978) The pineal gland: A biological clock in vitro. Science 202:1198–1201

    Google Scholar 

  • Björklund A, Lindvall O, Svensson LA (1972) Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32:113–131

    Google Scholar 

  • Boya J, Calvo J (1978) Post-hatching evolution of the pineal gland of the chicken. Acta Anat 101:1–9

    Google Scholar 

  • Calvo J, Boya J (1979a) Ultrastructural study of the embryonic development of the pineal gland of the chicken (Gallus gallus). Acta Anat 103:39–73

    Google Scholar 

  • Calvo J, Boya J (1979b) Evolution and nature of the dense bodies in the chicken pinealocytes. Acta Anat 104:61–71

    Google Scholar 

  • Collin JP (1969) Contribution à l'étude de l'organe pineal. De l'épiphyse sensorielle à la glande pinéale: Modalités de transformation et implications fonctionnelles. Ann Stat Biol de Besseen Chandesse Suppl 1:1–359

    Google Scholar 

  • Collin JP (1979) Recent advances in pineal cytochemistry. Evidence of the production of indolamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of amniota. In: Ariëns Kappers J, Pévet P (eds) The pineal gland of vertebrates including man (Progr in Brain Research, vol 52) Elsevier, Amsterdam, pp 271–295

    Google Scholar 

  • Collin JP, Oksche A (1981) Structural and functional relationships in the nonmammalian pineal gland. In: Reiter RJ (ed) The pineal gland (Anatomy and Biochemistry, vol 1) CRS Press Inc, USA, pp 27–67

    Google Scholar 

  • Deguchi T (1979a) Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science 203:1245–1247

    Google Scholar 

  • Deguchi T (1979b) A circadian oscillator in cultured cells of chicken pineal gland. Nature 282:94–96

    Google Scholar 

  • Deguchi T (1981) Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature 290:702–704

    Google Scholar 

  • El-Badawi A, Schenk EA (1967) Histochemical methods for separate, consecutive, and simultaneous demonstration of acetylcholinesterase and norepinephrine in cryostat sections. J Histochem Cytochem 15:580–588

    Google Scholar 

  • Eränkö O, Eränkö L (1971) Loss of histochemically demonstrable catecholamines and acetyl-cholinesterase from sympathetic nerve fibers of the pineal body of the rat after chemical sympathectomy with 6-hydroxydopamine. Histochem J 3:357–363

    Google Scholar 

  • Eränkö O, Rechardt L, Eränkö L, Cunningham A (1970) Light and electron microscopic histochemical observations on cholinesterase-containing sympathetic nerve fibers in the pineal body of the rat. Histochem J 2:479–489

    Google Scholar 

  • Falck B, Hillarp NÅ, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Falcon J (1979) Unusual distribution of neurons in the pike pineal organ. In: Ariëns Kappers J, Pévet P (eds) The pineal gland of vertebrates including man (Progr in Brain Research, vol 52). Elsevier, Amsterdam, pp 89–91

    Google Scholar 

  • Gaston S, Menaker M (1968) Pineal function: The biological clock in the sparrow? Science 160:1125–1127

    Google Scholar 

  • Hedlund L (1970) Sympathetic innervation of the avian pineal body. Anat Rec 166:406

    Google Scholar 

  • Hedlund L, Nalbandov AV (1969) Innervation of the avian pineal body. Am Zool 9:1090

    Google Scholar 

  • Hetherington T (1981) Morphology of the pineal organ in the salamander, Ensatina eschscholtzi J Morphol 169:191–206

    Google Scholar 

  • Kappers JA (1960) The development topographical relations and innervation of the epiphysis cersebri in the albino rat. Z Zellforsch 52:163–215

    Google Scholar 

  • Kappers JA (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. In: Ariëns Kappers J, Schadé JP (eds) Structure and function of the epiphysis cerebri (Progr in Brain Research, vol 10). Elsevier, Amsterdam, pp 87–153

    Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct coloring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221

    Google Scholar 

  • Korf HW (1974) Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell Tissue Res 155:475–489

    Google Scholar 

  • Korf HW, Liesner R, Meissl H, Kirk A (1981) Pineal complex of the clawed toad, Xenopus laevis Daud.: Structure and function. Cell Tissue Res 216:113–130

    Google Scholar 

  • Korf HW, Zimmerman NH, Oksche A (1982) Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res 222:243–260

    Google Scholar 

  • Lindvall O, Björklund A (1974) The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry 39:97–127

    Google Scholar 

  • Lindvall O, Björklund A, Hökfelt T, Ljungdahl Å (1973) Application of the glyoxylic acid method to vibratome sections for the improved visualization of central catecholamine neurons. Histochemie 35:31–38

    Google Scholar 

  • Matsuura T, Herwig HJ (1981) Histochemical and ultrastructural study of the nervous elements in the pineal organ of the eel, Anguilla anguilla. Cell Tissue Res 216:545–555

    Google Scholar 

  • Ohba S, Wake K, Ueck M (1979a) Histochemical and electron-microscopical findings in the pineal organ of Carassius gibelio (Langsd.). In: Ariëns Kappers J, Pévet P (eds) The pineal gland of vertebrates including man (Progr in Brain Research, vol 52). Elsevier, Amsterdam, pp 93–96

    Google Scholar 

  • Ohba S, Wake K, Ohnishi R, Ueck M (1979b) Neue Befunde am pinealen Sinnesapparat von Funa, Carassius gibelio langsdorfi (Teleostei). Verb Anat Ges 73:953–959

    Google Scholar 

  • Oksche A, Kirschstein H (1969) Elektronenmikroskopische Untersuchungen am Pinealorgan von Passer domesticus. Z Zellforsch 102:214–241

    Google Scholar 

  • Oksche A, Vaupel-von Harnack M (1966) Elektronenmikroskopische Untersuchungen zur Frage der Sinneszellen im Pinealorgan der Vögel. Z Zellforsch 69:41–60

    Google Scholar 

  • Oksche A, Morita Y, Vaupel-von Harnack M (1969) Zur Feinstruktur und Funktion des Pinealorgans der Taube (Columba livia). Z Zellforsch 102:1–30

    Google Scholar 

  • Oksche A, Kirschstein H, Kobayashi H, Farner DS (1972) Electron microscopic and experimental studies of the pineal organ in the white-crowned sparrow, Zonotrichia leucophrys gambelii. Z Zellforsch 124:247–274

    Google Scholar 

  • Omura Y (1980) Histochemical and ultrastructural studies on the nervous organization of the pineal organ of the ayu, Plecoglossus altivelis. Bull Jap Soc Sci Fish 46:1483–1488

    Google Scholar 

  • Owman C, Rüdeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550

    Google Scholar 

  • Owman C, Rüdeberg C, Ueck M (1970) Fluoreszenzmikroskopischer Nachweis biogener Monoamine in der Epiphysis cerebri von Rana esculenta und Rana pipiens. Z Zellforsch 111:550–558

    Google Scholar 

  • Quay WB (1966) Rhythmic and light-induced changes in levels of 5-hydroxyindoles in the pigeon (Columba livia). Gen Comp Endocrinol 6:371–377

    Google Scholar 

  • Sato T, Wake K (1981) Organization of the sensory and sympathetic nerves in the avian pineal organs. Jikeikai Med J 28 (Suppl 1):7–12

    Google Scholar 

  • Sato T, Wake K (1982) Nervous organization in the pineal organs of birds. In: Mikami S et al. (eds) Avian endocrinology: Environmental and ecological perspectives. Japan Sci Soc Press, Tokyo, Springer-Verlag, Berlin, 57–65

    Google Scholar 

  • Ueck M (1969) Zur Ultrastruktur der Epiphysis cerebri der Vögel. (Verh Zool Ges) Zool Anz Suppl 33:509–518

    Google Scholar 

  • Ueck M (1970) Weitere Untersuchungen zur Feinstruktur und Innervation des Pinealorgans von Passer domesticus L. Z Zellforsch 105:276–302

    Google Scholar 

  • Ueck M (1973) Fluoreszenz- und elektronenmikroskopische Untersuchungen am Pinealorgan verschiedener Vogelarten. Z Zellforsch 137:37–62

    Google Scholar 

  • Ueck M, Kobayashi H (1972) Vergleichende Untersuchungen über acetylcholinesterasehaltige Neurone im Pinealorgan der Vögel. Z Zellforsch 129:140–160

    Google Scholar 

  • Ueck M, Wake K (1982) Histochemische und elektronenmikroskopische Befunde zum Pinealorgan des schwarzen Milans, Milvus migrans (Falconidae). Verh Anat Ges 76:457–460

    Google Scholar 

  • Ueck M, Ohnishi R, Wake K (1977) Photoreceptor-like outer segments in the pineal organ of the lovebird, Uroloncha domestica (Aves: Passeriformes). A scanning electron microscopic study. Cell Tissue Res 182:139–143

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1981) Light- and electron-microscopic demonstration of immunore-active opsin in the pinealocytes of various vertebrates. Cell Tissue Res 221:451–463

    Google Scholar 

  • Vigh-Teichmann I, Korf HW, Oksche A, Vigh B (1982) Opsin-immunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res 227:351–369

    Google Scholar 

  • Wake K (1973) Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z Zellforsch 145:287–298

    Google Scholar 

  • Wake K, Ueck M, Oksche A (1974) Acetylcholinesterase-containing nerve cells in the pineal complex and subcommissural area of the frogs, Rana ridibunda and Rana esculenta. Cell Tissue Res 154:423–442

    Google Scholar 

  • Wight PAL, Mackenzie GM (1970) Dual innervation of the pineal of the fowl, Gallus domesticus. Nature (Lond) 228:474–475

    Google Scholar 

  • Zimmerman NH, Menaker M (1975) Neural connections of sparrow pineal: Role in circadian control of activity. Science 190:477–479

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant (No. 56480080) from the Ministry of Education, Science and Culture of Japan

Scholar of the Alexander von Humboldt Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Wake, K. Innervation of the avian pineal organ. Cell Tissue Res. 233, 237–264 (1983). https://doi.org/10.1007/BF00238294

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238294

Key words

Navigation