Skip to main content
Log in

Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In addition to the wellknown fictive locomotion, a fictive respiration can also be obtained in decorticate, unanaesthetized rabbit preparations after curarization and vagotomy.

Both patterns were abolished after high spinal (C2 or C3) transection. Spinal rhythmic capabilities could be disclosed after administration of nialamide and DOPA: together with the earlier demonstrated locomotor-like bursting in hindlimb and forelimb muscle nerves, two different types of phrenic bursting patterns could be observed, depending on endtidal CO2 levels: (1) short lasting phrenic bursts (SLPBs), coordinated with locomotor bursts, result of a locomotor driving process; (2) when end-tidal CO2 was slightly increased (4.5 instead of 4.0%), long lasting phrenic bursts (LLPBs) developed: they have no causal link with the locomotor bursts.

Intraspinal interactions were shown to operate between these rhythmic patterns: (1) the already mentioned caudo-rostral driving from hindlimb or posterior locomotion generators (pLGs) onto forelimb bursting and onto phrenic activity too (providing SLPBs in the latter case); (2) the rostro-caudal inhibition of fore- and hindlimb locomotor activity throughout each LLPB.

Since forelimb locomotor-like bursting and LLPBs could still be obtained after functional isolation of the cervico-thoracic cord (through C2 and Th12 spinal transections) with comparable interactions as before Th12 transection, it is concluded that: two categories of generators, forelimb or anterior locomotion generators (aLGs), and chemosensitive respiration generators (RGs) are both present in this part of the cord, on the one hand; interactions between RGs and pLGs are likely to be achieved via aLGs on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anden NE, Fuxe K, Hokfelt T (1967) Effect of some drugs on central monoamine nerve terminals lacking nerve impulse flow. Eur J Pharmacol 1: 226–232

    Google Scholar 

  • Aoki M, Mori S, Kawahara K, Watanabe H, Ebata N (1980) Generation of spontaneous respiratory rhythm in high spinal cats. Brain Res 202: 51–63

    Google Scholar 

  • Batsel HL (1964) Localization of bulbar respiratory center by microelectrode sounding. Exp Neurol 9: 410–426

    Google Scholar 

  • Bechbache RR, Duffin J (1977) The entrainment of breathing frequency by exercise rhythm. J Physiol (Lond) 272: 553–562

    Google Scholar 

  • Bessou P, Dejours P, Laporte Y (1959) Effets ventilatoires réflexes de la stimulation de fibres afférentes de grand diamètre d'origine musculaire chez le chat. CR Soc Biol (Paris) 153: 477–481

    Google Scholar 

  • Blanchi AL (1971) Localisation et étude des neurones respiratoires bulbaires. Mise en jeu antidromique par stimulation spinale ou vagale. J Physiol (Paris) 63: 5–40

    Google Scholar 

  • Bradley GW, Euler C von, Marttila I, Roos B (1974a) Transient and steady state effects of CO2 on mechanisms determining rate and depth of breathing. Acta Physiol Scand 92: 341–350

    Google Scholar 

  • Bradley GW, Euler C von, Marttila I, Roos B (1974b) Steady state effects of CO2 and temperature on the relationship between lung volume and inspiratory duration (Hering-Breuer threshold curve). Acta Physiol Scand 92: 351–363

    Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond [Biol] 84: 308–319

    Google Scholar 

  • Chatelier G, Buser P (1961) Dispositif de contention rigide du lapin pour exploration stéréotaxique. Electroencephalogr Clin Neurophysiol 13: 951–953

    Google Scholar 

  • Coglianese CJ, Peiss CN, Wurster RD (1977) Rhythmic phrenic nerve activity and respiratory activity in spinal dogs. Respir Physiol 29: 247–254

    Google Scholar 

  • Comroe J, Schmidt C (1943) Reflexes from the limb as a factor in the hyperpnea of muscular exercise. Am J Physiol 138: 536–547

    Google Scholar 

  • Euler C von, Herero F, Wexler I (1970) Control mechanisms determining rate and depth of respiratory movements. Respir Physiol 10: 93–108

    Google Scholar 

  • Frankstein SI, Lisin W, Sergeeva LN (1974) Is there a special pace-maker for stepping? Experientia 30: 1414–1415

    Google Scholar 

  • Gautier H, Lacaisse A, Dejours P (1969) Ventilatory response to muscle spindle stimulation by succinylcholine in cats. Respir Physiol 7: 383–388

    Google Scholar 

  • Grillner S, Zangger P (1974) Locomotor movements generated by the deafferented spinal cord. Acta Physiol Scand 91: 38A-39A

    Google Scholar 

  • Grunstein MM, Younes M, Milic-Emili J (1973) Control of tidal volume and respiratory frequency in anesthetized cats. J Appl Physiol 35: 463–476

    Google Scholar 

  • Harrison T, Harrison W, Calhoun J, Marsh JP (1932) Congestive heart failure. XVII. Mechanism of dyspnea on exertion. Arch Intern Med 50: 690–720

    Google Scholar 

  • Hoff HE, Breckenridge CG (1949) The medullary origin of respiratory periodicity in the dog. Am J Physiol 158: 157–172

    Google Scholar 

  • Holst E von (1939) Die relative Koordination als Phenomen und als Methode zentralnervöser Funktionsanalyse. Ergeb Physiol 42: 288–306

    Google Scholar 

  • Holst E von (1973) The behavioral physiology of animals and man: The collected papers of Erich von Holst, vol 1. Methuen, London

    Google Scholar 

  • Langendorff O, Nitschmann R (1880) Studien über die Innervation der Athembewegungen. I. Über die spinalen Zentren der Athmung. Arch Physiol 4: 518–549

    Google Scholar 

  • Jankowska E, Jukes MG, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord: 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70: 369–388

    Google Scholar 

  • Langworthy OR (1924) A physiological study of the reactions of young decerebrate mammals. Am J Physiol 69: 254–264

    Google Scholar 

  • Le Mare DW (1936) Reflex and rhythmical movements of the dogfish. J Exp Biol 13: 429–442

    Google Scholar 

  • Nelson JR (1959) Single unit activity in medullary respiration centers of cat. J Neurophysiol 22: 590–598

    Google Scholar 

  • Orlovsky GN (1970) Influence of the cerebellum on the reticulospinal neurones during locomotion. Biophysics 15: 928–936

    Google Scholar 

  • Orlovsky GN, Pavlova GA (1972) Effect of removal of the cerebellum on vestibular responses of neurons and various descending tracts in cats. Neurophysiol 4: 235–240

    Google Scholar 

  • Rikard-Bell GC, Bystrzycka EK (1980) Localization of phrenic motor nucleus in the cat and rabbit studied with horseradish peroxidase. Brain Res 194: 479–483

    Google Scholar 

  • Robertson RM, Moulins M (1981) Control of rhythmic behaviour by a hierarchy of linked oscillators in Crustacea. Neurosci Lett 21: 111–116

    Google Scholar 

  • Salmoiraghi GC, Burns BD (1960) Notes on mechanism of rhythmic respiration. J Neurophysiol 23: 14–26

    Google Scholar 

  • Viala D, Buser P (1971) Modalités d'obtention de rythmes locomoteurs chez le lapin spinal par traitements pharmacologiques (DOPA, 5-HTP, D-amphétamine). Brain Res 35: 151–165

    Google Scholar 

  • Viala D, Freton E (1980) Mise en évidence de générateurs de rythmes locomoteurs et de rythmes “respiratoires” dans la moelle cervico-thoracique du lapin. CR Seances Acad Sci (Serie D) 291: 573–576

    Google Scholar 

  • Viala D, Vidal C (1978) Evidence for distinct spinal locomotion generators supplying respectively fore- and hindlimbs in the rabbit. Brain Res 155: 182–186

    Google Scholar 

  • Viala D, Vidal C, Freton E (1979) Coordinated rhythmic bursting in respiratory and locomotor muscle nerves in the spinal rabbit. Neurosci Lett 11: 155–159

    Google Scholar 

  • Wang SC, Ngai SH, Frumin MJ (1957) Organization of central respiratory mechanisms in the brain stem of the cat: Genesis of normal respiratory rhythmicity. Am J Physiol 190: 333–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the C.N.R.S. (E.R.A. 411 and A.T.P. 3619), the D.G.R.S.T. (D.N. 78-7-2789) and the Fondation pour la Recherche Médicale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viala, D., Freton, E. Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions. Exp Brain Res 49, 247–256 (1983). https://doi.org/10.1007/BF00238584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238584

Key words

Navigation