Skip to main content
Log in

The large synaptic complexes of the substantia gelatinosa

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

A Golgi and electron microscope study, using also secondary degeneration after dorsal root transection and chronically isolated dorsal horn preparations, were undertaken with the objective to clarify the large (glomerulus-like) synaptic complexes in lamina II of the dorsal horn. The large sinusoid axon terminals forming the centers of these synaptic complexes are of intraspinal origin and are thought to arise from the hitherto unknown type of pyramid-shape nerve cells, situated at the border between laminae III and IV. The sinusoid axon terminals establish axo-dendritic synapses with substantia gelatinosa neurons and abundant axo-axonic synapses with smaller terminals that could be identified (at least partly) as endings of primary sensory afferents. The central sinuous axon terminals of the synaptic complexes are always presynaptic to the smaller axons and thus might be considered as a device for 1. presynaptic inhibition of impulse transmission from primary afferents to substantia gelatinosa neurons, and 2. as the anatomical basis for primary afferent depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Eccles, J.C.: The physiology of synapses. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • —, P.G. Kostyuk and R.F. Schmidt: Central pathways responsible for depolarization of primary afferent fibres. J. Physiol. (Lond.) 161, 237–257 (1962).

    Google Scholar 

  • —, M. Ito and J. Szentágothai: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Fink, R.P., and L. Heimer: Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4, 369–374 (1967).

    Google Scholar 

  • Gray, E.G.: A morphological basis for pre-synaptic inhibition ? Nature (Lond.) 193, 82–83 (1962).

    Google Scholar 

  • Heimer, L., and P.D. Wall: The dorsal root distribution to the substantia gelatinosa of the rat with a note on the distribution in the cat. Exp. Brain Res. 6, 89–99 (1968).

    Google Scholar 

  • Kerr, F.W.L.: The ultrastructure of the spinal tract of the trigeminal nerve and the substantia gelatinosa. Exp. Neurol. 16, 359–376 (1966).

    Google Scholar 

  • Lenhossék, M. v.: Der feinere Bau des Nervensystems im Lichte neuester Forschungen. Berlin: Kornfeld 1895.

    Google Scholar 

  • Majorossy, K., and M. Réthelyi: Synaptic architecture in the medial geniculate body (ventral division). Exp. Brain Res. 6, 306–323 (1968).

    Google Scholar 

  • Melzack, R., and P.D. Wall: Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    CAS  PubMed  Google Scholar 

  • Mendell, L.M.: Physiological properties of unmyelinated fiber projection to the spinal cord. Exp. Neurol. 16, 316–332 (1966).

    Google Scholar 

  • —, and P.D. Wall: Presynaptic hyperpolarization: a role for fine afferent fibers. J. Physiol. (Lond.) 172, 274–294 (1964).

    Google Scholar 

  • Pecci Saavedra, J., and O.L. Vaccarezza: Synaptic organization of the glomerular complexes in the lateral geniculate nucleus of Cebus monkey. Brain Res. 8, 389–393 (1968).

    Google Scholar 

  • Ralston, H.J.: The organization of the substantia gelatinosa Rolandi in the cat lumbosacral spinal cord. Z. Zellforsch. 67, 1–23 (1965).

    Google Scholar 

  • Ramóny Cajal, S.: Histologie de système nerveux de l'homme et des vertébrés. Paris: Maloine 1909.

    Google Scholar 

  • Réthelyi, M., and J. Szentágothai: On a peculiar type of synaptic arrangement in the substantia gelatinosa of Rolando. 8th International Congress of Anatomists, p. 99. Stuttgart: G. Thieme 1965.

    Google Scholar 

  • Rexed, B.: The cytoarchitectonic organization of the spinal cord in the cat. J. comp. Neurol. 96, 415–496 (1952).

    Google Scholar 

  • —: A cytoarchitectonic atlas of the spinal cord in the cat. J. comp. Neurol. 100, 297–379 (1954).

    Google Scholar 

  • Scheibel, M.E., and A.B. Scheibel: Terminal axonal patterns in cat spinal cord. I. The lateral corticospinal tract. Brain Res. 2, 333–350 (1966).

    Google Scholar 

  • — Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res. 9, 32–58 (1968).

    Google Scholar 

  • Schimert (Szentágothai), J.: Das Verhalten der Hinterwurzelkollateralen im Rückenmark. Z. Anat. Entwickl.-Gesch. 109, 666–697 (1939).

    Google Scholar 

  • Schmidt, R.P.: The functional organization of presynaptic inhibition of mechanoreceptor afferents. In: Structure and function of inhibitory neuronal mechanisms, pp. 227–233. Ed. by G. von Euler, S. Skoglund and U. Söderberg. Oxford: Pergamon Press 1968.

    Google Scholar 

  • Sterling, P., and G.F.M. Kuypers: Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers. Brain Res. 4, 1–15 (1967).

    Google Scholar 

  • Szentágothai, J.: Anatomical aspects of junctional transformation. In: Information processing in the nervous system, vol. 3, pp. 119–136. Ed. by R. W. Gerard and J. W. Duyff. Proc. Intern. Union Physiol. Sci. Intern. Congr., Sr. 49. Excerpta Medica Foundation. Amsterdam: Elsevier 1962.

    Google Scholar 

  • —: Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J. comp. Neurol. 122, 219–240 (1964).

    Google Scholar 

  • —: Pathways and subcortical relay mechanisms of visceral afferents. Acta neuroveg. (Wien) 28, 103–120 (1966).

    Google Scholar 

  • —: Synaptic architecture of the spinal motoneuron pool. In: Functions of the spinal cord. Experimental and Clinical Aspects. Vienna. VIth International Congress of Electroence-phalography and Clinical Neurophysiology, Suppl. 25. Ed. by L. Widén. Amsterdam: Elsevier 1967.

    Google Scholar 

  • —: Synaptic structure and the concept of presynaptic inhibition. In: Structure and function of inhibitory neuronal mechanisms, pp. 15–31. Ed. by C. von Euler, S. Skoglund and U. Söderberg. Oxford: Pergamon Press 1966/1968.

    Google Scholar 

  • Szentágothai, J.: Neuronhálózatok és neuronhálózati modelek (Neuron networks and neuron network models) [in Hungaria Oszt. Közl. (Academy Session, March 4, 1968) [in press].

  • —, and T. Kiss: Projection of dermatomes in the substantia gelatinosa. Arch. Neurol. (Chic.) 62, 734–744 (1949).

    Google Scholar 

  • —, J. Hámori and Therese Tömböl: Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2, 283–301 (1966).

    Google Scholar 

  • Uchizono, K.: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature (Lond.) 207, 642–643 (1965).

    Google Scholar 

  • Wall, P.D.: The origin of a spinal-cord slow potential. J. Physiol. (Lond.) 164, 508–526 (1962).

    Google Scholar 

  • Zimmermann, M.: Dorsal root potentials after C-fiber stimulation. Science 160, 896–898 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study has been carried out and the paper has been prepared largely before the recent publications of the paper by Scheibel and Scheibel (1968), which accounts for some overlap between the Golgi informations presented.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Réthelyi, M., Szentágothai, J. The large synaptic complexes of the substantia gelatinosa. Exp Brain Res 7, 258–274 (1969). https://doi.org/10.1007/BF00239033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239033

Key words

Navigation