Skip to main content
Log in

Forest vegetation of the Colorado Front Range

Composition and dynamics

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The forest vegetation of the northern Colorado Front Range was studied using a combination of gradient analysis and classification methods. A graphical model of forest composition based on elevation and topographic-moisture gradients was constructed using 305 0.1 ha samples. To derive the topographic moisture gradient, stands were stratified into eight 200 m elevation belts, and then ordinated by correspondence analysis using understory (<1 m) data. Each of the resultant gradients was scaled against a standard site moisture scalar derived from incident solar radiation and topographic position. Except for krummholz sites, the vegetation defined gradients fit the moisture scalar closely. Once scaled, these gradients were stacked vertically, sandwich-style, to create the graphical representation shown in Figure 5.

Gradient analysis and ordination (direct and indirect gradient analysis of Whittaker, 1967) are frequently viewed as alternative approaches for analysis of vegetation. With gradient analysis the axes are readily interpretable, but stand placement is often difficult and at times questionable. Ordination defines an optimal arrangement for species and/or stands, but axis interpretation is often impossible. With the present combination of methods, the interpretability of gradient analysis complements the precision of placement obtained with ordination.

Forest vegetation was classified by dividing the gradient model into eight series and 29 types on the basis of similar successional trends in canopy dominants. On dry, low-elevation sites above 1 700 m Pinus ponderosa woodlands dominate. With increasing elevation or site moisture, tree density increases and Pinus ponderosa, Pseudotsuga forests prevail. At middle elevations on mesic sites forests of mixed composition occur. Pinus contorta forests dominate at middle elevations over much of the central position of the moisture gradient, though these are primarily post-fire forests. With protection from fire only a small percentage of sites retain dominance by Pinus contorta. Over the lower portion of its range Pinus contorta is succeeded by Pseudotsuga, while at higher elevations Abies lasiocarpa and Picea engelmannii can eventually achieve dominance. At high elevations on all except the driest sites Picea engelmannii and Abies lasiocarpa are exclusive dominants, both after disturbance and in climax forests. Pinus flexilis dominates on the driest high-elevation sites. Above 3 500 m forests are replaced by alpine tundra, often with a transitional krummholz zone.

Structure and post-fire development were examined in the context of the gradient-based classification scheme. Three generalized types of forest development were recognized as reference points in a continuum of developmental patterns varying with both elevation and soil moisture.

On favorable, middle-elevation sites, trees become established rapidly after disturbance. Rapid growth results in severe overcrowding and competitive elimination of reproduction. As a consequence bell-shaped diameter distributions develop. Diversity and productivity appear to drop while biomass remains roughly constant. Following decades or even centuries of stagnation, the forests eventually breakup through mortality of the canopy trees, thereby allowing regeneration to resume. During this period of renewed regeneration, biomass, diversity, and productivity all show dramatic changes in response to the changing population structure (Fig. 9). This type of forest development can be found in forests dominated by Picea engelmannii and Abies lasiocarpa, Pinus contorta, Pseudotsuga menzeisii, Pinus flexilis or Populus tremuloides. On highest elevation forest sites or at middle elevations on the very driest sites reestablishment rates are greatly reduced. These forests dominated by Picea and Abies or Pinus flexilis gradually approach predisturbance levels of biomass, diversity and productivity, while regeneration remains at a roughly constant level. At lower elevations in the Pinus ponderosa woodlands, regeneration appears episodic, reflecting variation in seed rain and favorable conditions for seedling growth. Here, inter-tree competition is relatively unimportant and diameter distributions show irregular humps resulting from periodic recruitment.

A few species pairs presented consistent problems and their treatment as single species was necessary. Garex rossii and C. brevipes were lumped as Carex rossii. Rosa woodsii and R. acicularis were lumped as Rosa sp. Cirsium scopulorum and C. coloradense were lumped as Cirsium coloradense. Extreme forms of Arnica cordifolia and A. latifolia are easily distinguishable, but as these species intergrade and hybridize extensively, they have been lumped as Arnica cordifolia. The native bluegrass, Poa agassizensis, was lumped with Poa paratensis. Solidago missouriensis includes some S. canadensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AichingerE., 1951. Vegetationsentwicklungstypen ale Grundlage unserer land- und forstwirtechaftlichen Arbeit. Angew. Pflanzensoziol. (Wien) 1: 17–30.

    Google Scholar 

  • Alexander, R. R., 1974. Silviculture of subalpine forests in the southern Rocky Mountains: the status of our knowledge. U.S.D.A. For.Serv., Rocky Mt. For. Range Exp. Stat., Res. Pap. RM-121. 88 pp.

  • AmmanG. D., 1977. The role of the mountain pine beetle in lodgepole pine ecosystems: impact on succession. In: MattsonW. J. (ed.), The role of arthropods in forest ecosystems. Springer-Verlag, N.Y. 3–18.

    Google Scholar 

  • Amundsen, C. C., 1967. The subalpine forest of Wild Basin, Front Range, Colorado. Ph.D. Thesis, Univ. Col., Boulder. 129 pp.

  • AuclairA. N. & GoffF. G., 1971. Diversity relations of upland forests in the western Great Lakes area. Amer. Natur. 105: 499–528.

    Google Scholar 

  • BalleyR. L. & DellT. R., 1973. Quantifying diameter distributions with the Weibull function. For. Sci. 19: 97–104.

    Google Scholar 

  • Barry, R. G., 1972. Climatic environment of the east slope of the Colorado Front Range. Inst. Arct. Alp. Res., Occ. Pap. 3, Univ. Col., Boulder, 206 pp.

  • BarryR. G., 1973. A climatological transect on the east slope of the Front Range, Colorado. Arct. Alp. Res. 5: 89–110.

    Google Scholar 

  • Bates, C. G., 1924. Forest types in the central Rocky Mountains as affected by climate and soil. U.S.D.A. Bull. 1233, 152 pp.

  • BillingsW.D., 1969. Vegetational pattern near alpine timberline as affected by fire-snowdrift interactions. Vegetatio 19: 192–207.

    Google Scholar 

  • BiswellH. H., 1973. Fire ecology in ponderosa pine-grassland. Tall Timbers Fire Ecol. Conf., Proc. 12: 69–96.

    Google Scholar 

  • BlissC. I. & ReinkerK. A., 1964. A lognormal approach to diameter distribution in even-aged stands. For. Sci. 10: 350–360.

    Google Scholar 

  • BloombergW. O., 1950. Fire and spruce. Forest. Chron. 26: 157–161.

    Google Scholar 

  • Bollinger, W. H., 1973. The vegetation patterns after fire at the alpine forest-tundra ecotone in the Colorado Front Range. Ph.D. Thesis, Univ. Col., Boulder, 67 pp.

  • BoosM. E. & BoosC. M., 1934. Granites of the Front Range, Colorado: The Long's Peak-St. Vrain batholith. Bull. Geol. Soc. Amer. 45: 303–332.

    Google Scholar 

  • BoosC. M. & BoosM. F., 1934. Granites of the Front Range, Colorado: The Long's Peak- St. Vrain batholith. Bull. Geol. Soc. Amer. 45: 303–332.

    Google Scholar 

  • BoosC. M. & BoosM. F., 1957. Tectonies of the eastern flank crop success in relation to recent climatic change. Adv. Ecol. Res. 7: 177–233.

    Google Scholar 

  • BrayJ. R. & CurtisJ. T., 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Bunin, J. E., 1975. The vegetation of the west slope of the Park Range, Colorado. Ph.D. Thesis, Univ. Col., Boulder.

    Google Scholar 

  • CajanderA. K., 1926. The theory of forest types. Acta For. Fenn. 29(3):1–108.

    Google Scholar 

  • CajanderA. K., 1949, Forest types and their significance. Acta For. Fenn. 56(4): 1–71.

    Google Scholar 

  • CarothersJ. E., 1951. Estes Park, past and present. Univ. Denver Press, Denver.

    Google Scholar 

  • ClementsF. E., 1910. The life history of lodgepole burn forests. U.S.D.A. For. Serv. Bull. 79: 7–56.

    Google Scholar 

  • CooperC. F., 1960. Changes in vegetation, structure, and growth of southwestern pine forests since white settlement. Ecol. Monogr. 30: 129–164.

    Google Scholar 

  • CooperC. F., 1961. Patterns in ponderosa pine forests. Ecology 42: 493–499.

    Google Scholar 

  • CormackR. G. H., 1956. Spruce-fir elimax vegetation in southwestern Alberta. Forest. Chron. 3s: 346–349.

    Google Scholar 

  • CostelloD. F., 1954. Vegetation zones in Colorado. In: HarringtonH. D. (ed.), Manual of the plants of Colorado. Sage Books, Denver, iii-x.

    Google Scholar 

  • CrandallC. S., 1897. Natural reforestation on the mountains of northern Colorado, Garden and Forest 506: 437–507, 446–447.

    Google Scholar 

  • CurtisJ. T., 1959. The vegetation of Wisconsin: an ordination of plant communities. Univ. Wise, Press, Madison. 657 pp.

    Google Scholar 

  • DahlE., 1956. Rondane: mountain vegetation in South Norway and its relation to the environment. Norske Videnskaps- Akademi. Oslo, I. Mat.-Naturv. Kl. 1953: 1–374.

    Google Scholar 

  • DaubenmireR. F., 1938. Merriam's life zones of North America. Quart. Rev. Biol. 13: 327–332.

    Google Scholar 

  • DaubenmireR. F., 1943. Vegetation zonation in the Rocky Mountains. Bot. Rev. 9: 325–393.

    Google Scholar 

  • DaubenmireR. F., 1976. The use of vegetation in assessing the productivity of forest lands. Bot. Rev. 42: 115–143.

    Google Scholar 

  • Daubenmire, R. F. & Daubenmire, J. B., 1968. Forest vegetation of eastern Washington and northern Idaho. Washington Agr. Exp. Stat. Tech. Bull. 60. 104 pp.

  • Day, R. J., 1963. The microclimate occupied by spruce and fir in the Rocky Mountains, Can. Dept. For., Publ. 1037. 25 pp.

  • DayR. J., 1972. Stand structure, succession, and use of southern Alberta's Rocky Mountain forest. Ecology 53: 472–478.

    Google Scholar 

  • DeByleN. V., 1979. Potential effects of stable versus fluctuating elk populations in the aspen ecosystem. In: BoyceM. S. & L. D.Hayden-Wing (eds.). North American elk: ecology, behavior and management. Univ. Wyo., Laramie, 13–19.

    Google Scholar 

  • DespainD. G., 1973. Vegetation of the Big Horn Mountains, Wyoming, in relation to substrate and climate. Ecol. Monogr. 43: 329–355.

    Google Scholar 

  • DodgeM., 1972. Forest fuel accumulation—a growing problem. Science 177: 139–142.

    Google Scholar 

  • Douglas, M. M., 1954. Ecology of forest succession on aridge in the subalpine forest of northern Colorado. M.A. Thesis, Univ. Cel., Boulder.

  • DyeA. J. & MoirW. H., 1977. Spruce-fir forest at its southern distribution in the Rocky Mountains, New Mexico. Amer. Midl. Natur. 97: 133–146.

    Google Scholar 

  • FennemanN. M., 1931. Physiolography of Western United States. McGraw-Hill, New York, 534 pp.

    Google Scholar 

  • FondaR. W. & BlissL. C., 1969. Forest vegetation of the mentane and subalpine zones. Olympic Mountains, Washington, Ecol. Monogr. 39: 271–301.

    Google Scholar 

  • FoxJ. F., 1977. Alternation and coexistence of tree species. Amer. Natur. 111: 69–89.

    Google Scholar 

  • Frank, E. C. & Lee, R., 1966. Potential solar beam irradiation on slopes: Tables for 30° to 50° latitude. U.S.D.A. For. Serv., Rocky Mt. For. Range Exp. Stat. Res. Pap. RM-18. 116 pp.

  • Franklin, J. F. & Dyrness, C. T., 1973. Natural vegetation of Oregon and Washington. U.S.D.A. For. Serv., Pac. Northwest For. Range Exp. Stat., Gen. Tech. Rep. PNW-8, 417 pp.

  • FranklinJ. F. & HemstromM. A., 1981. Aspects of succession in the coniferous forests of the Pacific Northwest. In: ShugartH. H., D. B.Botkin & D.West (eds), Forest succession: concept and application. Springer-Verlag. N. Y. (in press).

    Google Scholar 

  • FreyT. E. A., 1978. The Finnish School and forest site-types. In: WhittakerR. H. (ed.), Classification of plant communities 2nd ed. Junk, The Hague, 81–110.

    Google Scholar 

  • FullerM. B., 1924. General features of Pre-cambrian structure along Big Thompson River in Colorado. Journ. Geol. 32: 49–63.

    Google Scholar 

  • GauchH. G., WhittakerR. H. & WentworthT. R., 1977. A comparative study of reciprocal averaging and other ordination techniques, J. Ecol. 65: 157–174.

    Google Scholar 

  • GleasonH. A., 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7–26.

    Google Scholar 

  • Glenn-LewinD. C., 1975. Plant species diversity in ravines of the southern Finger Lakes region, New York: Can. J. Bot. 53: 1465–1472.

    Google Scholar 

  • GoffF. G. & WestD., 1975. Canopy-understory interaction effects on forest population structure. For. Sci. 21: 98–108.

    Google Scholar 

  • GoffF. G. & ZedlerP. H., 1968. Structural gradient analysis of upland forests in the western Great Lakes area. Ecol. Monogr. 38: 65–86.

    Google Scholar 

  • GounotM., 1969. Méthodes d'étude quantitative de la végétation. Masson et Cie, Paris. 314 pp.

    Google Scholar 

  • GriggsR. F., 1956. Competition and succession on a Rocky Mountain fellfield. Ecology 37: 8–20.

    Google Scholar 

  • HabeckJ. R. & MutchR. W., 1973. Fire-dependent forests in the northern Rocky Mountains. Quat. Res. 3: 408–424.

    Google Scholar 

  • HannaL. A., 1934. The major plant communities of the headwaters area of the Little Laramie River, Wyoming. Wyo. Univ. Publ. Sci. 1: 243–266.

    Google Scholar 

  • HansenH. P., 1940. Ring growth and dominance in a spruce-fir association in Southern Wyoming. Amer. Midl. Natur. 23: 442–448.

    Google Scholar 

  • HansonH. C., 1955. Characteristics of the Stipa comata-Bouteloua gracilia-Bouteloua curtipondula association in northern Colorado. Ecology 36: 269–280.

    Google Scholar 

  • HansonH. C. & DahlE., 1957. Some grassland communities in the mountain front zone in northern Colorado. Vegetatio 7: 249–270.

    Google Scholar 

  • HansonH. C. & SmithF. B., 1928. Some types of vegetation in relation to soil profile in northern Colorado. J. Amer. Soc. Agron. 20: 142–151.

    Google Scholar 

  • HarperJ. L., 1967. A Darwinian approach to plant ecology. J. Ecol. 55: 247–270.

    Google Scholar 

  • HarperJ. L., 1977. Population biology of plants. Academic Press, N. Y. 892 pp.

    Google Scholar 

  • HarperJ. L. & WhiteJ., 1974. The demography of plants. Ann. Rev. Ecol. Syst. 5: 419–463.

    Google Scholar 

  • HarringtonH. D. 1954. Manual of the plants of Colorado. Sage Hooks, Colorado. 666 pp.

    Google Scholar 

  • HartshornG. S., 1975. A matrix model of tree population dynamics. in: GolleyF. B. & E.Medina (eds.), Tropical ecological systems. Ecol. Studies. 11: 41–51. Springer-Verlag, N.Y.

    Google Scholar 

  • HavasP., 1971. The water connomy of the bilberry (Vaccinium myrtillus) under winter conditions. Rep. Kevo Subarctic Res. Staf. 8: 41–52.

    Google Scholar 

  • HettJ. M., 1971. A dynamic analysis of age in sugar maple seedlings. Ecology 52: 1071–1074.

    Google Scholar 

  • HettJ. M. & LougksO. L., 1971. Sugar maple (Acer saccharum Marsh,) seedling mortality. J. Ecol. 59: 507–520.

    Google Scholar 

  • HillM. O., 1973. Reciprocal averaging: an eigenvector method of ordination, J. Ecol. 61: 237–249.

    Google Scholar 

  • HillM. O., 1974 Correspondence analysis: a neglected multivariate method. Appl. Statist. 23: 340–354.

    Google Scholar 

  • HitchcockC. L. & CronquistA., 1973. Flora of the Pacific Northwest, Univ. Wash. Press. Seattle, 730 pp.

    Google Scholar 

  • Hobson, E. R. & Foster, J. H., 1910. Engelmann spruce in the Rocky Mountains. U.S.D.A. For. Serv. Circ. 170. 23 pp.

  • HoffC. C., 1957. A comparison of soil, climate, and biota of conifer and aspen communities in the central Rocky Mountains, Amer. Midl. Natur. 58: 115–140.

    Google Scholar 

  • Hoffman, G. R. & Alexander, R. R., 1976. Forest vegetation of the Bighorn Mountains, Wyoming: a habitat type classification, U.S.D.A. For. Serv. Res. Pap. RM-170. 38 pp.

  • Horton, K. W., 1956. The ecology of lodgepole pine in Alberta, Can. Dept. For., Techn. Note 45. 29 pp.

  • Horton, K. W., 1950. Characteristies of subalpine spruce in Alberta. Can. Dept. For., Tech. Note 76. 20 pp.

  • HoustonD. B., 1973. Wildfires in northern Yellowstone National Park. Ecology 54: 1111–1117.

    Google Scholar 

  • HyessaloY., 1937. Perä=Pohjolan luonnon normaalien metsiköiden kasvu ja kehitys. (Summary in English: Growth of natural normal stands in central North-Soumi [Finland]). Metsätieteellisen Tutkimuslaitoksen Julkaisuja 24(2): 1–168.

    Google Scholar 

  • IvesR. L. 1938. Weather phenomena of the Colorado Rockies. J. Franklin Inst. 226: 691–755.

    Google Scholar 

  • IvesR. L., 1942. Atypical subalpine environments. Ecology 23: 89–96.

    Google Scholar 

  • IvesR. L. 1946. Botanical indicators of air drifts. Ecology 27: 364–369.

    Google Scholar 

  • JacksonM. T. & FallerA., 1973. Structural analysis and dynamics of the plant communities of Wizard Island, Crater Lake National Park, Ecol. Monogr. 43: 441–461.

    Google Scholar 

  • JohnsonD. D. & ClineA. J., 1965. Colorado mountain soils. Adv. Agr. 17: 233–281.

    Google Scholar 

  • JohnsonF. L. & BellD. T., 1978. Size-class structure of three streamside forests. Amer. J. Bot. 62: 81–85.

    Google Scholar 

  • KessellS. R., 1976. Wildland inventories and fire modeling by gradient analysis in Glacier National Park. Tall Timbers Fire Ecol. Conf., Proc. 14: 115–162.

    Google Scholar 

  • KessellS. R., 1979 Gradient modeling: resource and fire management. Springer-Verlag, N.Y. 432 pp.

    Google Scholar 

  • Kiener, W., 1967. Sociological studies of the alpine vegetation on Long's Peak. Univ. Nebraska Stud. n.s. 34. 75 pp.

  • Komárková, V., 1979. Alpine vegetation of the Indian Peaks area. J. Cramer. Vaduz. 591 pp.

  • KomárkováV. & WebberP. J., 1978. An alpine vegetation map of Niwot Ridge Colorado. Aret. Alp. Res. 10: 1–29.

    Google Scholar 

  • LangenheimJ. H., 1962. Vegetation and environmental patterns in the Crested Butte area, Gunnison County, Colorado. Ecol. Monogr. 32: 249–285.

    Google Scholar 

  • LarsonJ. A., 1930. Forest types of the northern Rocky Mountains and their climatic controls. Ecology 11: 631–672.

    Google Scholar 

  • LayserE. F., 1974. Vegetation classification: its application to forestry in the northern Rocky Mountains. J. For. 72: 354–357.

    Google Scholar 

  • LeakW. B., 1964. An expression of diameter distribution for unbalanced, uneven-aged stands and forests. For. Sci. 10: 39–50.

    Google Scholar 

  • LeakW. B., 1965. The J-shaped probability distribution. For. Sci. 11: 405–409.

    Google Scholar 

  • LeakW. B., 1969. Stocking of northern hardwood regeneration based on exponential dropout rate. For. Chron. 45: 344–347.

    Google Scholar 

  • LoopeL. L. & GruellG. E., 1973. The ecological role of fire in the Jackson Hole Area, northwestern Wyoming. Quat. Res. 3: 425–443.

    Google Scholar 

  • LoucksO. L., 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Google Scholar 

  • Lovering, T.S. & Goddard, E. N., 1950. Geology and ore deposits of the Front Range, Colorado. U.S. Geol. Surv. Prof. Pap. 223, 310 pp.

  • LunanJ. S. & HabeckJ. R., 1973. The effect of fire exclusion on ponderosa pine communities in Glacier National Park, Montana. Can. J. For. Res. 3: 574–579.

    Google Scholar 

  • MelntoshR. P., 1967, The continuum concept of vegetation. Bot. Rev. 33: 130–187.

    Google Scholar 

  • McKnight, M. E., 1968. A literature review of the spruce, western, and 2-year-cycle budworms. U.S.D.A. For. Serv., Rocky Mt. For. Range Exp. Stat. Res. Pap. RM-44, 35 pp.

  • Marr, J. W., 1961. Ecosystems of the east slope of the Front Range in Colorado. Univ. Col. Stud. Biol. 8, 134 pp.

    Google Scholar 

  • Marr, J. W., 1967. Data on mountain environments 1, Front Range, Colorado, sixteensites, 1952–1953, Univ. Col. Stud., Biol. 27, 110 pp.

  • MarrJ. W., 1977. The development and movement of tree islands near the upper limit of tree growth in the southern Rocky Mountains. Ecology 58: 1159–1164.

    Google Scholar 

  • Marr, J. W., Clark, J. M., Osburn, W. S. & Paddock, M. W., 1968. Data on mountain environments III. Front Range, Colorado, four climax regions, 1959–1964. Univ. Col. Stud. Biol. 29, 181 pp.

  • Marr, J. W., Johnson, A. W., Osburn, W. S. & Knorr, O. A., 1968. Data on mountain environments, II. Front Range, Colorado, four climax regions, 1953–1958. Univ. Col. Stud., Biol. 28, 169 pp.

  • Mason, D. T., 1915. The life history of lodgepole pine in the Rocky Mountains. U.S.D.A. Bull, 154, 35 pp.

  • MeyerH. A., 1952. Structure, growth, and drain in balanced uneven-aged forests. J. For. 50: 85–92.

    Google Scholar 

  • MillerP. C., 1970. Age distributions of spruce and fir in beetle-killed forests on the White River Plateau, Colorado. Amer. Midl. Natur. 83: 206–212.

    Google Scholar 

  • Minore, D., 1972. A classification of forest environments in the south Umpqua Basin. U.S.D.A. For. Serv., Pac. Northwest For. Range Exp. Stat., Res. Pap. PNW-129, 28 pp.

  • MoirW. H., 1969. The lodgepole pine zone in Colorado. Amer. Midl. Natur. 81: 87–98.

    Google Scholar 

  • Moir, W. H., 1972. Litter, foliage, branch and stem production in contrasting lodgepole pine habitats of the Colorado Front Range. In: Franklin, J. F. L. J. Dempster & R. H. Waring (eds.), Proceedings: Research on coniferous forest ecosystems — a symposium. U.S.D.A. Forest Service, Pac. NW For. Range Exp. Stat. Publ, 189–198.

  • MoirW. H. & FrancisR., 1972. Foliage biomass and surface area in three Pinus contorta plots in Colorado. For. Sci. 18: 41–45.

    Google Scholar 

  • MooreJ. J., FitzsimonsP., LambeE. & WhiteJ., 1970. A comparison and evaluation of some phytosociological techniques. Vegetatio 20: 1–20.

    Google Scholar 

  • MorganM. D., 1969. Ecology of aspen in Gunnison County, Colorado. Amer. Midl. Natur. 82: 204–228.

    Google Scholar 

  • MossE. H., 1953. Forest communities in northwestern Alberta. Can. J. Bot. 31: 212–252.

    Google Scholar 

  • MossE. H., 1955. The vegetation of Alberta. Bot. Rev. 21: 493–567.

    Google Scholar 

  • Mueller-DomboisD., 1964. The forest habitat types in southeastern Manitoba and their application to forest management. Can. J. Bot. 42: 1417–1444.

    Google Scholar 

  • Mueller-DomboisD. & EllenbergH., 1974. Aims and methods of vegetation ecology. Wiley, N.Y. 547 pp.

    Google Scholar 

  • Musselman, L. K., 1971. Rocky Mountain National Park administrative history, 1915–1965. U.S. Dept. Int., N.P.S., 251 pp.

  • NelsonT. C., 1964. Diameter distribution and growth of loblolly pine. For. Sci. 10: 105–114.

    Google Scholar 

  • NobleD. L. & AlexanderR. R., 1977. Environmental factors affecting natural regeneration of Engelmann spruce in the central Rocky Mountains. For. Sci. 23: 420–429.

    Google Scholar 

  • OlgeirsonE., 1974. Parallel conditions and trends in vegetation and soil on a bald near tree line, Boreas Pass, Colorado. Arct. Alp. Res. 6: 185–203.

    Google Scholar 

  • OostingH. J. & ReedJ. F., 1952. Virgin spruce-fir of the Medicine Bow Mountains, Wyoming. Ecol. Monogr. 22: 69–91.

    Google Scholar 

  • PackardF. M., 1942. Wildlife and aspen in Rocky Mountain National Park. Ecology 23: 478–482.

    Google Scholar 

  • PackardF. M., 1947. A study of deer and elk herds of Rocky Mountain National Park, Colorado. J. Mamm. 28: 4–12.

    Google Scholar 

  • Patten, D. R. & Avant, H. D., 1970. Fire stimulated aspen sprouting in a spruce-fir forest in New Mexico. U.S.D.A. For. Serv., Rocky Mt. For. Range Exp. Stat., Res. Note RM-159, 3 pp.

  • PeetR. K., 1974. The measurement of species diversity. Ann. Rev. Ecol. Syst. 5: 285–307.

    Google Scholar 

  • PeetR. K., 1978a. Forest vegetation of the Colorado Front Range: Patterns of species diversity. Vegetatio 37: 65–78.

    Google Scholar 

  • PeetR. K., 1978b. Latidudinal variation in southern Rocky Mountain forests. J. Biogeogr. 5: 275–289.

    Google Scholar 

  • PeetR. K., 1981. Changes in biomass and production during secondary forest succession. in: ShugartH. H., D. B.Botkin & D.West (eds.), Forest succession: concept and application. Springer-Verlag, N.Y. (in press).

    Google Scholar 

  • PetermanZ. E., HedgeC. E. & BraddockW. A., 1968. Age of precambrian events in the northeastern Front Range, Colorado. J. Geophy. Res. 73: 2277–2296.

    Google Scholar 

  • PfisterR. D. & DaubenmireR., 1975. Ecology of lodgepole pine, Pinus contorta Dougl. In: BaumgartnerD. M. (ed.), Management of lodgepole pine ecosystems. Wash. State Univ. Press, Pullman, 27–46.

    Google Scholar 

  • Pfister, R. D., Kovalchik, B. L., Arno, S. F. & Presby, R. C., 1977. Forest habitat types of Montana. U.S.D.A. For. Serv., Intermountain For. Range Exp. Stat. Gen. Techn. Rpt. INT-34, 174 pp.

  • PlochmannR., 1956. Bestockungsaufbau und Baumartenwandel nordischer Urwälder dargestellt an Beispielen aus Nordwestalberta/Kanada. Forstwiss. Forsch 6: 1–96 (Engl. summary).

    Google Scholar 

  • PogrebnjakP. S., 1929. Uber die Methodik der Standorts-untersuchungen in Verbindung mit den Waldtypen. Verh. Intern. Kongr. forstl. Versuchsanstalten, 2: 455–471.

    Google Scholar 

  • RaabeE., 1952. Über den ‘Affinitatswert’ in der Pflanzensoziologie. Vegetatio 4: 53–68.

    Google Scholar 

  • RabotnovT. A., 1969. On coenopopulations of perennial herbaceous plants in natural coenoses. Vegetatio 19: 87–95.

    Google Scholar 

  • RamaleyF., 1907. Plant zones in the Rocky Mountains of Colorado. Science 26: 642–643.

    Google Scholar 

  • RamaleyF., 1908. Botany of northeastern Larimer County, Colorado. Univ. Col. Studies 5: 119–131.

    Google Scholar 

  • RamaleyF. & RobbinsW. W., 1908. Ecological notes from northcentral Colorado. Univ. Col. Stud. 5: 111–117.

    Google Scholar 

  • RaunkiaerC., 1934. Life forms of plants and statistical plant geography. Clarendon Press, Oxford. 632 pp.

    Google Scholar 

  • RaupH. M., 1946. Phytogeographic studies in the Athabaska—Great Slave Lake Region, II. J. Arnold Arb. 27: 1–85.

    Google Scholar 

  • ReedJ. F., 1952. The vegetation of the Jackson Hole Wildlife Park, Teton County, Wyoming. Amer. Midl. Natur. 48: 700–729.

    Google Scholar 

  • Reed, R. M., 1969. A study of forest vegetation in the Wind River Mountains, Wyoming. Ph.D. Thesis, Wash. St. Univ., Pullman, Wash. 77 pp.

  • ReedR. M., 1971. Aspen forests of the Wind River Mountains, Wyoming. Amer. Midl. Natur. 86: 327–343.

    Google Scholar 

  • ReedR. M., 1976. Coniferous forest habitat types of the Wind River Mountains, Wyoming. Amer. Midl. Natur. 95: 159–173.

    Google Scholar 

  • RetzerJ. L., 1953. Soil-vegetation surveys of wild-lands. J. For. 51: 615–619.

    Google Scholar 

  • Retzer, J. L., 1974. Alpine soils. In: Ives, J. D. & R. G. Barry (eds.), Arctic and alpine environments. Methuen. 771–802.

  • RichmondG. M., 1960. Glaciation of the east slope of Rocky Mountain National Park, Colorado. Geol. Soc. Amer., Bull. 71: 1371–1382.

    Google Scholar 

  • RichmondG. M., 1972. Appraisal of the future climate of the Holocene in the Rocky Mountains. Quat. Res. 2: 315–322.

    Google Scholar 

  • RobbinsW. W. & DoddsG. S., 1908. Distribution of conifers on the mesas. Univ. Col. Studies 6: 37–49.

    Google Scholar 

  • Roe, A. L. & Amman, G. D., 1970. The mountain pine beetle in lodgepole pine forests. U.S.D.A. For. Serv., Intermountain For. Range Exp. Stat. Res. Pap. INT-71, 23 pp.

  • Romme, W. H., 1977. Vegetation in relation to elevation, topography, and fire history in a Wyoming montane watershed. M.S. Thesis. Univ. Wyoming, Laramie. 168 pp.

  • RootR. B., 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Monogr. 37: 317–350.

    Google Scholar 

  • RoweJ. S., 1956. Uses of undergrowth plant species in forestry. Ecology 37: 461–473.

    Google Scholar 

  • RydbergP. A., 1916. Vegetative life zones of the Rocky Mountain region. Mem. N.Y. Bot. Gard. 6: 477–499.

    Google Scholar 

  • SchimperA. F. W., 1903. Plant geography upon a physiological basis. Clarendon Press, Oxford.

    Google Scholar 

  • SchmelzD. V. & LindseyA. A., 1965. Size-class structure of old-growth forests in Indiana. For. Sci. 11: 258–264.

    Google Scholar 

  • Schmid, J. M. & Hinds, T. E., 1974. Development of spruce-fir stands following spruce beetle outbreaks. U.S.D.A. For. Serv., Rocky Mt. For. Range Exp. Stat., Res. Pap. RM-131. 16 pp.

  • Schubert, G. H., 1974. Silviculture of southwestern ponderosa pine: the status of our knowledge. U.S.D.A. For. Serv., Rocky Mt. For. Range Exp. Stat., Res. Pap. RM-123. 71pp.

  • Seely, H. E., 1961. Some investigations of forest sampling methods. Can. Dept. For., Tech. Note 111, 17 pp.

    Google Scholar 

  • Severson, K. E. & Thilenius, J. F., 1976. Classification of quaking aspen stands in the Black Hills and Bear Lodge Mountains. U.S.D.A. For. Serv. Res. Pap. RM-166. 24 pp.

  • ShimwellD. W., 1971. Description and classification of vegetation. Sedgwick and Jackson, London. 322 pp.

    Google Scholar 

  • SirenG., 1955. The development of spruce forest on raw humus sites, in northern Finland and its ecology. Acta For. Fenn. 62(4): 1–363.

    Google Scholar 

  • SmarttP. F. M. & GraingerJ. E. A., 1974. Sampling for vegetation survey: some aspects of the behavior of unrestricted, restricted and stratified techniques. J. Biogeogr. 1: 193–206.

    Google Scholar 

  • Smith, D. R., 1969. Vegetation, soils, and their interrelationships at timberline in the Medicine Bow Mountains, Wyoming. Univ. Wyoming Agr. Exp. Stat. Sci. Monogr. 17. 13 pp.

  • StahelinR., 1943. Factors influencing the natural restocking of high altitude burns by coniferous trees in the central Rocky Mountains. Ecology 24: 19–30.

    Google Scholar 

  • StenekerG. A., 1974. Factors affecting the suckering of trembling aspen. For. Chron. 50: 32–34.

    Google Scholar 

  • TerborghJ., 1973. On the notion of favorableness in plant ecology. Amer. Natur. 107: 481–501.

    Google Scholar 

  • Thompson, B. H., 1933. Memorandum to the director RE: Elk and deer winter range in Rocky Mountain National Park. Dated Sept. 23, 1933 (cited in Packard 1947).

  • ThornburyW. D., 1965. Regional geomorphology of the United States. Wiley, New York,. 609 pp.

    Google Scholar 

  • TrassH. & MalmerN., 1978. North European approaches to classification. In: WhittakerR. H. (ed.), Classification of plant communities. 2nd ed. Junk, The Hague. 201–247.

    Google Scholar 

  • U.S.D.A., 1975. Soil taxonomy. Agri. Handbk. 436. 754 pp.

  • VestalA. G., 1917. Foothills vegetation in the Colorado Front Range. Bot. Gaz. 64: 353–385.

    Google Scholar 

  • WaliM. K. & KrajinaV. J., 1973. Vegetation-environment relationships of some sub-boreal spruce zone ecosystems in British Columbia. Vegetatio 26: 237–381.

    Google Scholar 

  • WalkerB. H. & CouplandR. T., 1968. An analysis of vegetation — environment relationships in Saskatchewan sloughts. Can. Jour. Bot. 46: 509–522.

    Google Scholar 

  • WalterH., 1970. Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh. 539 pp.

    Google Scholar 

  • WalterH. & LiethH., 1967. Klimadiagramm-Weltatlas. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • WaringR. H. & MajorJ., 1964. Some vegetation of the California coastal redwood region in relation to gradients of moisture, nutrients, light, and temperature. Ecol. Monogr. 34: 167–215.

    Google Scholar 

  • WeaverH., 1959. Ecological changes in the ponderosa pine forest of the Warm Springs Indian Reservation in Oregon. Jour. For. 57: 15–20.

    Google Scholar 

  • WeaverH., 1974. Effects of fire on temperate forests: Western United States. In: KozlowskiT. T. & C. E.Ahlgren (eds.), Fire and ecosystems. Academic Press, N.Y., 279–319.

    Google Scholar 

  • WeaverT. & DaleD., 1974. Pinus albicaulis in central Montana: Environment, vegetation and production. Amer. Midl. Natur. 92: 222–230.

    Google Scholar 

  • WebbD. A., 1954. Is the classification of plant communities either possible or desirable? Bot. Tidskr. 51: 362–370.

    Google Scholar 

  • WeberW. A., 1972. Rocky Mountain flora. Fourth edition, Col. Assoc. Univ. Press, Boulder, 438 pp.

    Google Scholar 

  • WellsP. V., 1965. Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains region. Science 148: 246–249.

    Google Scholar 

  • WestN. E., 1969. Successional changes in the montane forest of the central Oregon Cascades. Amer. Midl. Natur. 81: 265–271.

    Google Scholar 

  • Whipple, S. A., 1975. The influence of environmental gradients on vegetational structure in the subalpine forest of the southern Rocky Mountains. Ph.D. Thesis, Col. St. Univ., Ft. Collins.

  • WhippleS. A. & DixR. L., 1979. Age structure and successional dynamics of a Colorado subalpine forest. Amer. Midl. Nat. 101: 142–158.

    Google Scholar 

  • WhitfieldC. J., 1963. The vegetation of the Pike's Peak Region. Ecol. Monogr. 3: 75–105.

    Google Scholar 

  • WhittakerR. H., 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • WhittakerR. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Google Scholar 

  • WhittakerR. H., 1962. Classification of natural communities. Bot. Rev. 28: 1–239.

    Google Scholar 

  • WhittakerR. H., 1965. Dominance and diversity in land plant communities. Science 147: 250–260.

    Google Scholar 

  • WhittakerR. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • WhittakerR. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Google Scholar 

  • WhittakerR. H. & NieringW. A., 1965. Vegetation of the Santa Catalina Mountains. Arizona: A gradient analysis of the south slope. Ecology 46: 429–452.

    Google Scholar 

  • WhittakerR. H. & NieringW. A., 1968. Vegetation of the Santa Catalina Mountains, Arizona. IV. Limestone and acid soils. J. Ecol. 56: 523–544.

    Google Scholar 

  • WhittakerR. H. & NieringW. A., 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56: 771–790.

    Google Scholar 

  • WikumD. A. & WallM. K., 1974. Analysis of a North Dakota gallery forest: vegetation in relation to topographic and soil gradients. Ecol. Monogr. 44: 441–464.

    Google Scholar 

  • Willard, B. E., 1963. Phytosociology of the alpine tundra of Trail Ridge. Rocky Mountain National Park, Colorado. Ph.D. Thesis, Univ. Colorado, Boulder.

    Google Scholar 

  • WillardB. E., 1979. Plant sociology of alpine tundra, Trail Ridge, Rocky Mountain National Park, Colorado. Col. School Mines Quart. 74(4): 1–119.

    Google Scholar 

  • Wirsing, J. M., 1973. Forest vegetation in southeastern Wyoming, M.S. Thesis, Wash. St. Univ., Pullman.

  • WrightH. E., 1974. Landscape development, forest fires, and wilderness management. Science 186: 487–495.

    Google Scholar 

  • YodaK., 1967. A preliminary survey of the forest vegetation of eastern Nepal. II. General description, structure and floristic composition of the sample plots chosen from different vegetation zones. J. Coll. Arts Sci. Chiba Univ., Nat. Sci. Ser. 5: 99–140.

    Google Scholar 

  • YoungR. J., 1907. The forest formations of Boulder County, Colorado. Bot. Gaz. 44: 321–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature follows Weber (1972) for most species. In some cases where Weber's narrow generic concept deviates from the main thrust of present-day North American systematic botany, names were changed to conform with Harrington (1954) and Hitchcock & Cronquist (1973). Voucher specimens have been deposited in the herbarium of Rocky Mountain National Park, with a few unusual species being deposited in the herbarium of the University of Colorado, Boulder.

Numerous individuals have contributed generously to this project. Among those to whom I am particularly indebted are B. Chabot, R. T. Clausen, C. V. Cogbill, J. Douglas, H. G. Gauch. Jr., D. C. Glenn-Lewin, D. Hamilton, K. H. Hildebrandt, D. Mueller-Dombois, R. L. Peet, D. Stevens, E. L. Stone, J. Vleck, W. A. Weber, T. R. Wentworth, and P. L. Whittaker. I especially thank R. H. Whittaker for advice and encouragement. Financial support was provided by grants from the National Science Foundation, the DuPont Foundation, Cornell University and the University of North Carolina Research Council. The cooperation and support of the National Park Service is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peet, R.K. Forest vegetation of the Colorado Front Range. Vegetatio 45, 3–75 (1981). https://doi.org/10.1007/BF00240202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240202

Keywords

Navigation