Skip to main content
Log in

Sulphur content and the hydrogen evolving activity of NiS x deposits using statistical experimental strategies

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of such electroplating conditions as current density, thiourea (TU) concentration, temperature and pH on the sulphur content of NiS x deposited electrodes has been systematically studied using fractional factorial design and response surface methodology. Fractional factorial analysis indicates that the main and interaction effects of TU concentration and current density are the key variables influencing sulphur content in a NiS x deposit. Empirical models for sulphur content and hydrogen evolution overpotential are fitted and plotted, using central composite experimental design, as contour diagrams in order to facilitate comparison with experimental sulphur content trends and hydrogen evolving activity. The results show that, for deposits containing > 12 wt % sulphur content, hydrogen evolving activity increases with increasing sulphur content, while for those possessing < 12 wt% sulphur content, hydrogen evolution overpotential decreases with increasing electroplating current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kita, J. Electrochem. Soc. 113 (1966) 1095.

    Google Scholar 

  2. E. R. Gonzalez, L. A. Avaca, A. Carubell, A. A. Tanaka and G. Tremiliosi-Filho, Int. J. Hydrogen Energy 9 (1984) 689.

    Google Scholar 

  3. J. Y. Huot, J. Electrochem. Soc. 136 (1989) 1933.

    Google Scholar 

  4. J. Balajka, Int. J. Hydrogen Energy 8 (1983) 755.

    Google Scholar 

  5. H. Beer, US Patent 3632498 (1972).

  6. K. Lohrberg and P. Kohl, Electrochim. Acta 29 (1984) 1557.

    Google Scholar 

  7. M. B. F. Santos, E. Peres Da Silva, R. Andrade Jr and J. A. F. Dias, ibid. 37 (1992) 29.

    Google Scholar 

  8. N. Yoshida, M. Yoshitake, E. Endoh and T. Morimoto, Int. J. Hydrogen Energy 14 (1989) 137.

    Google Scholar 

  9. H. Vandenborre, Ph. Vermeiren and R. Leysen, Electrochim. Acta 29 (1984) 297.

    Google Scholar 

  10. F. Hine, M. Yasuda and M. Watanabe, Denki Kagaku 47 (1979) 401.

    Google Scholar 

  11. R. Sabela and I. Paseka, J. Appl. Electrochem. 20 (1990) 500.

    Google Scholar 

  12. K. Yamaguchi, A. Senda, and A. Sakata, J. Electrochem. Soc. 137 (1990) 1419.

    Google Scholar 

  13. R. Kh. Burshtein, V. E. Kazarinov, A. G. Pshenichnikov, I. E. Barbasheva, O. A. Gafarova and I. V. Obruishnikova, Élektrokhimiya 23 (1987) 711.

    Google Scholar 

  14. G. E. P. Box, W. G. Hunter, and J. S. Hunter, ‘Statistics for Experiments’, Wiley, New York (1978) pp. 374–433.

    Google Scholar 

  15. Idem, ibid.‘, pp. 510–539.

    Google Scholar 

  16. ASTM, E350-82 (1984) 525.

  17. V. M. Shulman, S. V. Larionov, T. V. Kramareve, E. I. Arykova and V. V. Yudina, Russ. J. Inorg. Chem. 11 (1966) 580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, TC., Lin, SM. & Tsai, JM. Sulphur content and the hydrogen evolving activity of NiS x deposits using statistical experimental strategies. J Appl Electrochem 24, 233–238 (1994). https://doi.org/10.1007/BF00242889

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242889

Keywords

Navigation