Skip to main content
Log in

A justification of the von Kármán equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The method of asymptotic expansions, with the thickness as the parameter, is applied to the nonlinear, three-dimensional, equations for the equilibrium of a special class of elastic plates under suitable loads. It is shown that the leading term of the expansion is the solution of a system of equations equivalent to those of von Kármán. The existence of solutions of this system is established. It is also shown that the displacement and stress corresponding to the leading term of the expansion have the specific form generally assumed in the usual derivations of the von Kármán equations; in particular, the displacement field is of Kirchhoff-Love type. This approach also clarifies the nature of admissible boundary conditions for both the von Kármán equations and the three-dimensional model from which these equations are obtained. A careful discussion of the limitations of this approach is given in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., A. Douglis & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. XVII (1964), 35–92.

    Google Scholar 

  2. Antman, S. S., Fundamental mathematical problems in the theory of non-linear elasticity, in Numerical Solution of Partial Differential Equations-III (B. Hubbard, Editor), pp. 35–54, Academic Press, 1976.

  3. Antman, S.S., The eversion of thick spherical shells, Arch. Rational Mech. Anal. 70 (1979/80), 113–123.

    Google Scholar 

  4. Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337–403.

    Google Scholar 

  5. Berger, M.S., Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

    Google Scholar 

  6. Ciarlet, P.G., Une justification des équations de von Kármán, C. R. Acad. Sci. Paris Sér. A 288 (1979), 469–472.

    CAS  PubMed  Google Scholar 

  7. Ciarlet, P.G., Derivation of the von Kármán equations from three-dimensional elasticity in Proceedings of the Fourth Conference on Basic Problems in Numerical Analysis, Plzeň, September, 1978 pp. 37–49, 1979.

  8. Ciarlet, P.G., & P. Destuynder, A justification of the two-dimensional linear plate model, J. Mécanique 18 (1979), 315–344.

    Google Scholar 

  9. Ciarlet, P.G., & P. Destuynder, A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg. 17/18 (1979), 227–258.

    Google Scholar 

  10. Ciarlet, P.G., & S. Kesavan, Problèmes de valeurs propres pour les plaques: Comparaison entre les modèles tri- et bi-dimensionnels (to appear).

  11. Deny, J., & J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Institut Fourier (Grenoble) V (1953–1954), 305–370.

  12. Destuynder, P., Sur une Justification Mathématique des Théories de Plaques et de Coques en Elasticité Linéaire, Doctoral Dissertation, Université Pierre et Marie Curie, 1980.

  13. Duvaut, G., & J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

    Google Scholar 

  14. Green, A. E., & W. Zerna, Theoretical Elasticity, University Press, Oxford, 1968.

    Google Scholar 

  15. Hlaváček, I., & J. Naumann, Inhomogeneous boundary value problems for the von Kármán equations, I, Aplikace Matematiky 19 (1974), 253–269.

    Article  Google Scholar 

  16. Hlaváček, I., & J. Naumann, Inhomogeneous boundary value problems for the von Kármán equations. II, Aplikace Matematiky 20 (1975), 280–297.

    Google Scholar 

  17. John, F., Estimates for the derivatives of the stresses in a thin shell and interior shell equations, Comm. Pure and Appl. Math. 18 (1965), 235–267.

    Google Scholar 

  18. John, F., Refined interior equations for thin elastic shells, Comm. Pure and Appl. Math. 24 (1971), 583–615.

    Google Scholar 

  19. John, O., & J. Nečas, On the solvability of von Kármán equations, Aplikace Matematiky 20 (1975), 48–62.

    Google Scholar 

  20. von Kármán, T., Festigkeitsprobleme im Maschinenbau, in Encyklopädie der Mathematischen Wissenschaften, Vol. IV/4, C, pp. 311–385, Leipzig, 1910.

  21. Koiter, W.T., On the foundations of the linear theory of thin elastic shells. I–II, Proc. Kon. Ned. Akad. Wetensch. B 73 (1970), 169–195.

    Google Scholar 

  22. Koiter, W.T., & J.G. Simmonds, Foundations of shell theory, in Proceedings of Thirteenth International Congress of Theoretical and Applied Mechanics (Moscow, 1972), pp. 150–176, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  23. Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flows, Gordon & Breach, New York, 1969.

    Google Scholar 

  24. Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

    Google Scholar 

  25. Lions, J.-L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Mathematics, vol. 323, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  26. Lions, J.-L., & E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968.

    Google Scholar 

  27. Marsden, J.E., & T.J.R. Hughes, Topics in the mathematical foundations of elasticity, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. II, pp. 30–285, Pitman, London, 1978.

    Google Scholar 

  28. Morgenstern, D., & I. Szabò, Vorlesungen über Theoretische Mechanik, Springer-Verlag, Berlin, 1961.

    Google Scholar 

  29. Nečas, J., Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.

    Google Scholar 

  30. Novozhilov, V.V., Foundation of the Nonlinear Theory of Elasticity, Graylock, 1953.

  31. Oden, J.T., Existence theorems for a class of problems in nonlinear elasticity, J. Math. Anal. Appl. 69 (1979), 51–83.

    Google Scholar 

  32. Schwartz, L., Théorie des Distributions, Hermann, Paris, 1966.

    Google Scholar 

  33. Stoker, J.J., Nonlinear Elasticity, Gordon and Breach, New York, 1968.

    Google Scholar 

  34. Stoppelli, F., Un teorema di esistenza e di unicità relativo alle equazioni dell'elastostatica isoterma per deformazioni finite, Ricerche di Matematica 3 (1954), 247–267.

    Google Scholar 

  35. Témam, R., Navier-Stokes Equations, North-Holland, 1977.

  36. Timoshenko, S., & W. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, 1959.

  37. Truesdell, C., A First Course in Rational Continuum Mechanics, Volume 1 : General Concepts, Academic Press, 1976.

  38. Truesdell, C., Comments on Rational Continuum Mechanics, Three Lectures for the International Symposium on Continuum Mechanics and Partial Differential Equations, Instituto de Matemática, Universidade Federal do Rio de Janeiro, August 1–5, 1977, pp. 495–603 of Contemporary Developments in Continuum Mechanics and Partial Differential Equations, ed. G.M. de LaPenha & L.A. Medeiros, Amsterdam, North-Holland, 1978.

    Google Scholar 

  39. Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics, Handbuch der Physik, vol. III/3. Springer, Berlin, 1965.

    Google Scholar 

  40. Valid, R., La Mécanique des Milieux Continus et le Calcul des Structures, Eyrolles, Paris, 1977.

    Google Scholar 

  41. van Buren, M., On the Existence and Uniqueness of Solutions to Boundary Value Problems in Finite Elasticity, Thesis, Carnegie-Mellon University, 1968.

  42. Wang, C.-C, & C. Truesdell, Introduction to Rational Elasticity, Noordhoff, Groningen, 1973.

    Google Scholar 

  43. Washizu, K., Variational Methods in Elasticity and Plasticity, Second Edition, Pergamon, Oxford, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. Antman & J. L. Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G. A justification of the von Kármán equations. Arch. Rational Mech. Anal. 73, 349–389 (1980). https://doi.org/10.1007/BF00247674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00247674

Keywords

Navigation