Skip to main content
Log in

A hereditary partial differential equation with applications in the theory of simple fluids

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The linearized boundary-initial history value problem for simple fluids obeying the Coleman-Noll constitutive equation

$$S + p\delta = 2\int\limits_0^\infty {m(s)(E(t - s} ) - E(t))ds$$

is considered. Here S is the stress tensor, δ the Kronecker delta, p the constitutively indeterminate mean normal stress, E the infinitesimal strain tensor, and m(s) a material function. The shear relaxation modulus G is defined as

$$G(s) = \int\limits_\infty ^s {m(\xi )d\xi .}$$
((i))

In this paper it is shown that if G satisfies the assumptions

$$G \in C^2 [0,\infty ),{\text{ }}G(s) \to 0{\text{ as }}s \to \infty,$$
((i))
$$( - 1)^k \frac{{d^k G(s)}}{{ds^k }} > 0,{\text{ }}k = 0,1,$$
((ii))
$$G''(s) \geqq 0,$$
((iii))

then the rest state of the fluid is stable in an appropriate “fading memory” norm. The additional assumption

$$ - \int\limits_0^\infty {G'} (s)s^2 ds < \infty$$
((iv))

yields asymptotic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, J.M., Stability theory for an extensible beam. J. Diff. Eq. 14 (1973), 399–418.

    Google Scholar 

  • Ball, J.M., & L.A. Peletier, Stabilization of concentration profiles in catalyst particles. (1975) to appear.

  • Barbu, V., Integro-differential equations in Hilbert spaces. Analele Stiintificeale Universitatii “Al. I. Cuza” din Iasi, (Serie Noua), Sectinunea I, a. Matematica, Volume XIX (1973), 365–383.

    Google Scholar 

  • Boltzmann, L., Sitzber. Akad. Wiss. Wien, Math, naturw. Kl. 70 (1874), 275.

    Google Scholar 

  • Chafee, N., A stability analysis for a semilinear parabolic partial differential equations. J. Diff. Eq. 15 (1974). 522–540.

    Google Scholar 

  • Chafee, N., & E.F. Infante, A bifurcation problem for a nonlinear partial differential equations of parabolic type. Applicable Anal. 4 (1974), 17–38.

    Google Scholar 

  • Coleman, B.D., & H. Markovitz, Incompressible second order fluids. Advances Appl. Mech. 8, New York: Academic Press (1968), 69–101.

  • Coleman, B.D., & V.J. Mizel, Norms and semigroups in the theory of fading memory. Arch. Rational Mech. Anal. 23 (1966), 87–123.

    Google Scholar 

  • Coleman, B.D., & W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys. 33 (1961), 239–249.

    Google Scholar 

  • Coleman, B.D., & W. Noll, Simple fluids with fading memory, Proceedings of the international symposium on second-order effects in elasticity, plasticity, and fluid dynamics, Haifa, April 21–29, 1962. Oxford, Paris, New York: Pergamon Press; Israel: Jerusalem Academic Press (1962), 530–552.

    Google Scholar 

  • Craik, A.D., A note on the static stability of an elastoviscous fluid. J. Fluid Mech. 33 (1968), 33–39.

    Google Scholar 

  • Dafermos, C.M., On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29 (1968), 241–271.

    Google Scholar 

  • Dafermos, C.M., Wave equations with weak damping. S.I.A.M. J. Appl. Math. 18 (1970a), 759–767.

    Google Scholar 

  • Dafermos, C.M., An abstract Volterra equation with applications to linear viscoelasticity. J. Diff. Eq. 7 (1970b).

  • Dafermos, C.M., Semiflows associated with compact and uniform processes. Math. Systems Theory 8 (1974), 142–149.

    Google Scholar 

  • Dafermos, C.M., Contraction semigroups and trend to equilibrium in continuum mechanics. Proceedings I.U.T.A.M./I.M.U. Conference on Applications of Functional Analysis to Mechanics, (1975), to appear.

  • Dafermos, C.M., & M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Functional Anal. 13 (1973), 97–106.

    Google Scholar 

  • Foguel, S.R., Powers of a contraction in Hilbert space. Pacific J. Math. 13 (1963), 551–562.

    Google Scholar 

  • Fujita, H., & T. Kato, On the Navier-Stokes initial value problem. Arch. Rational Mech. Anal. 16 (1964), 269–315.

    Google Scholar 

  • Friedman, A., & M. Shinbrot, Volterra integral equations in Banach space. Trans. Amer. Math. Soc. 126 (1967), 131–179.

    Google Scholar 

  • Hale, J.K., Dynamical systems and stability. J. Math. Analysis Appl. 26 (1969), 39–59.

    Google Scholar 

  • Joseph, D.D., Slow motion and viscometric motion; stability and bifurcation of the rest state of a simple fluid. Arch. Rational Mech. Anal. 56 (1974), 99–157.

    Google Scholar 

  • Joseph, D.D., Stability of fluid motions. Springer Tracts in Natural Philosophy, Vol. 28. Berlin, Heidelberg, New York: Springer-Verlag (1976).

    Google Scholar 

  • Knops, R.J., & E. W. Wilkes, Theory of elastic stability. Handbuch der Physik VIa/3, ed. C. Truesdell. Berlin, Heidelberg, New York: Springer-Verlag (1973).

    Google Scholar 

  • Lasalle, J.P., The extent of asymptotic stability. Proc. Nat. Acad. Sci. USA 46 (1960), 363–365.

    Google Scholar 

  • Lions, J.L., Quelques méthodes de resolution des problèmes aux limites non linéaires. Paris: Dunod and Gauthier Villars (1969).

    Google Scholar 

  • Lumer, G., & R.S. Phillips, Dissipative operators in a Banach space. Pacific J. Math. 11 (1961), 679–698.

    Google Scholar 

  • Maccamy, R.C., An integro-differential equation with applications in heat flow. (1975) to appear.

  • Mizohata, S., The theory of partial differential equations. London, New York: Cambridge Univ. Press (1973).

    Google Scholar 

  • Nachlinger, R.R., & J. Nunziato, Stability of uniform temperature fields in linear heat conductors with memory. (1976), to appear International J. Eng. Sci.

  • Segal, I.E., Non-linear semi-groups. Annals of Math. 78 (1963), 339–364.

    Google Scholar 

  • Slemrod, M., A note on complete controllability and stabilizability for linear control systems in Hilbert space. SIAM J. Control 12 (1974), 500–508.

    Google Scholar 

  • Slemrod, M., Asymptotic behavior of C0 semigroups as determined by the spectrum of the generator. Indiana Univ. Math. J. (1976).

  • Slemrod, M., & E.F. Infante, An invariance principle for dynamical systems on Banach space: application to the general problem of thermoelastic stability. Instability of continuous systems (H. Leipholz, ed.) Berlin: Springer-Verlag (1971), 215–221.

    Google Scholar 

  • Webb, G.F., Continuous nonlinear perturbations of linear accretive operators in Banach spaces. J. Funct. Anal. 10 (1972), 191–203.

    Google Scholar 

  • Yosida, K., Functional analysis, New York: Springer-Verlag (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.D. Joseph

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slemrod, M. A hereditary partial differential equation with applications in the theory of simple fluids. Arch. Rational Mech. Anal. 62, 303–321 (1976). https://doi.org/10.1007/BF00248268

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248268

Keywords

Navigation