Skip to main content
Log in

Buckled states of a spherical shell under uniform external pressure

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A method is outlined to obtain the “preferred” buckled states of a (complete) spherical shell under uniform external pressure. The shell model investigated is that of the John equations, a system of six nonlinear partial differential equations. Methods in bifurcation theory and group representations are used to reduce the problem to a finite-dimensional problem whose solutions generate buckled states that are “preferred” in a certain least-energy sense. Asymptotic methods and Newton's method are used in some special cases to relate the “preferred” buckled states obtained by the above approach to actual buckled states observed in experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965.

    Google Scholar 

  2. S. S. Antman, “Buckled states of nonlinearly elastic plates”, Arch. Rational Mech. Anal. 67 (1978), 111–149.

    Google Scholar 

  3. L. Bauer, H.B. Keller & E.L. Reiss, “Axisymmetric buckling of hollow spheres and hemispheres”, Comm. Pure Appl. Math. 23 (1970), 529–568.

    Google Scholar 

  4. M.S. Berger & P.C. Fife, “On von Kármán's equations and the buckling of a thin elastic plate”, Bull. Amer. Math. Soc. 72 (1966), 1006–1011.

    Google Scholar 

  5. L. Berke & R. L. Carlson, “Experimental studies of the postbuckling behavior of complete spherical shells”, Experimental Mech. 8 (1968), 548–553.

    Google Scholar 

  6. R.L. Carlson, R.L. Sendelbeck & N.J. Hoff, “Experimental studies of the buckling of complete spherical shells”, Experimental Mech. 7 (1967), 281–288.

    Google Scholar 

  7. I.M. Gel'fand, R.A. Milnos & Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, MacMillan Company, New York, 1963.

    Google Scholar 

  8. A. Grundmann, “Der topologische Abbildungsgrad homogener Polynomoperatoren,” Dissertation, Universität Stuttgart, 1974.

  9. F. John, “Estimates for the derivatives of the stresses in a thin shell and interior shell equations”, Comm. Pure Appl. Math. 18 (1965), 235–267.

    Google Scholar 

  10. F. John, “Refined interior equations for thin elastic shells”, Comm. Pure Appl. Math. 24 (1971), 583–615.

    Google Scholar 

  11. G.H. Knightly & D. Sather, “Existence and stability of axisymmetric buckled states of spherical shells”, Arch. Rational Mech. Anal. 63 (1977), 305–319.

    Google Scholar 

  12. G. H. Knightly & D. Sather, “Nonlinear buckled states of rectangular plates”, Arch. Rational Mech. Anal. 54 (1974), 356–372.

    Google Scholar 

  13. W.T. Koiter, “Over de stabiliteit van het elastisch evenwicht”, Thesis, Delft: H. J. Paris, Amsterdam, 1945. English translation issued as Technical Report AFFDL-TR-70–25, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 1970.

    Google Scholar 

  14. W.T. Koiter, “Elastic stability and post-buckling behavior”, Nonlinear Problems, edited by R. Langer, University of Wisconsin Press, Madison, 1963.

    Google Scholar 

  15. W.T. Koiter, “The nonlinear buckling problem of a complete spherical shell under uniform external pressure”, Proc. Kon. Nederl. Akad. Wet. Amsterdam B72 (1969), 40–123.

    Google Scholar 

  16. W.T. Koiter, “On the nonlinear theory of thin elastic shells”, Proc. Kon. Nederl. Akad. Wet. Amsterdam B 69 (1966), 1–54.

    Google Scholar 

  17. A. M. Lyapunov, “Sur les figures d'équilibre peu différentes des ellipsoides d'une masse liquide homogène donée d'un mouvement de rotation”, Zap. Akad. Nauk St. Petersburg 1 (1906), 1–225.

    Google Scholar 

  18. E.H. Rothe, “Completely continuous scalars and variational methods”, Ann. of Math. 49 (1948), 265–278.

    Google Scholar 

  19. D. Sather, “Asymptotics III: Stationary phase for two parameters with an application to Bessel functions”, Pacific J. Math. 12 (1962), 1423–1433.

    Google Scholar 

  20. D. Sather, “Branching of solutions of an equation in Hilbert space”, Arch. Rational Mech. Anal. 36 (1970), 47–64.

    Google Scholar 

  21. D. Sather, “Branching and stability for nonlinear shells”, Proc. IUTAM/IMU Symp., Applications of Methods of Functional Analysis to Problems of Mechanics, Marseille, 1975. Lecture Notes in Mathematics, No. 503, Springer, New York, 1976.

    Google Scholar 

  22. D. Sather, “Bifurcation and stability for a class of shells”, Arch. Rational Mech. Anal. 63 (1977), 295–304.

    Google Scholar 

  23. D.H. Sattinger, “Group representation theory and branch points of nonlinear functional equations”, SIAM J. Math. Anal. 8 (1977), 179–201.

    Google Scholar 

  24. D.H. Sattinger, “Group representation theory, bifurcation theory, and pattern formation”, J. Fund. Anal. 28 (1978), 58–101.

    Google Scholar 

  25. D.H. Sattinger, “Bifurcation from rotationally invariant states”, J. Math. Phys. 19 (1978), 1720–1732.

    Google Scholar 

  26. D. H. Sattinger, “Stability of bifurcating solutions by Leray-Schauder degree”, Arch. Rational. Mech. Anal. 43 (1971), 154–166.

    Google Scholar 

  27. E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen”, Math. Ann. 65 (1908), 370–379.

    Google Scholar 

  28. J.M.T. Thompson, “The rotationally-symmetric branching behavior of a complete spherical shell”, Proc. Kon. Nederl. Akad. Wet. Amsterdam B 67 (1964), 295–311.

    Google Scholar 

  29. C. Truesdell, “Invariant and complete stress functions for general continua”, Arch. Rational Mech. Anal. 4 (1959/60), 1–29.

    Google Scholar 

  30. N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. Antman

G. H. Knightly's research was supported in part by the U.S. National Science Foundation Grants No. MCS 77-04927 and No. MCS 79-03555; that of D. Sather, in part by U.S. National Science Foundation Grant No. MCS 78-02140 and in part by the Council on Research and Creative Work of the University of Colorado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knightly, G.H., Sather, D. Buckled states of a spherical shell under uniform external pressure. Arch. Rational Mech. Anal. 72, 315–380 (1980). https://doi.org/10.1007/BF00248522

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248522

Keywords

Navigation