Skip to main content
Log in

N 5,N 10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 μM, a K m for F420H2 of 4 μM, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H4MPT:

tetrahydromethanopterin

CH2=H4MPT:

N 5,N 10-methylene-H4MPT

CH3−H4MPT:

N 5-methyl-H4MPT

CH≡H4MPT:

methenyl-H4MPT

F420 :

coenzyme F420

MFR:

methanofuran

CHO-MFR:

formyl-MFR

1 U:

1 μmol/min

References

  • Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature 327:48–49

    Google Scholar 

  • Bio-Rad Laboratories (1981) Instruction manual for Bio-Rad protein assay. Bio-Rad Laboratories, Richmond, Calif., USA

    Google Scholar 

  • Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuret-methode. Z Klin Chem Klin Biochem 5:419–422

    Google Scholar 

  • Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett 244:21–25

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brömmelstroet BWte, Hensgens CMH, Keltjens JT, Drift Cvan der, Vogels GD (1990) Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain ΔH. J Biol Chem 265:1852–1857

    Google Scholar 

  • Brömmelstroet BWte, Hensgens CHM, Keltjens JT, Drift Cvan der, Vogels GD (1991) Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH. Biochim Biophys Acta 1073:77–84

    Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeglobus profundus sp. nov., represents a new species within the sulphate-reducing archaebacteria. System Appl Microbiol 13:24–28

    Google Scholar 

  • Burggraf S, Stetter KO, Rouvière P, Woese CR (1991) Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. System Appl Microbiol (in press)

  • Dahl C, Koch H-G, Keuken O, Trüper HG (1990) Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeglobus fulgidus. FEMS Microbiol Lett 67:27–32

    Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394

    Google Scholar 

  • Escalante-Semerena JC, Leigh JA, RinehartJr KL, Wolfe RS (1984a) Formaldehyde activation factor, tetrahydromethanopterin, a coenzyme of methanogenesis. Proc Natl Acad Sci USA 81:1976–1980

    Google Scholar 

  • Escalante-Semerena JC, RinehartJr KL, Wolfe RS (1984b) Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem 259:9447–9455

    Google Scholar 

  • Görg A, Postel W, Günther S (1988) The current state of twodimensional electrophoresis with immobilized pH gradients (a review). Electrophoresis 9:531–546

    Google Scholar 

  • Gorris LGM, Voet ACWA, van derDrift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. Biofactors 3:29–35

    Google Scholar 

  • Hensel R, König H (1988) Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol Lett 49:75–79

    Google Scholar 

  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gasliquid solid phase peptide and protein sequenator. J Biol Chem 256:7990–7997

    Google Scholar 

  • Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834

    Google Scholar 

  • Kanodia S, Roberts MF (1983) Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 80:5217–5221

    Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1989) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253:226–230

    Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1990a) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194:367–372

    Google Scholar 

  • Karrasch M, Börner G, Thauer RK (1990b) The molybdenum cofactor of forunylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett 274:48–52

    Google Scholar 

  • Kräutler B, Kohler H-PE, Stupperich E (1988) 5′-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. Eur J Biochem 176:461–469

    Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol (in press)

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Ma K, Thauer RK (1990a) N 5,N 10-Methylenetetrahydromethanopterin reductase from Methanosarcina barkeri. FEMS Microbiol Lett 70:119–124

    Google Scholar 

  • Ma K, Thauer RK (1990b) Single step purification of methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum by specific binding to Blue Sepharose CL-6B. FEBS Lett 268:59–62

    Google Scholar 

  • Ma K, Thauer RK (1990c) Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 191:187–193

    Google Scholar 

  • Ma K, Linder D, Stetter KO, Thauer RK (1991) Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri. Arch Microbiol 155:593–600

    Google Scholar 

  • Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368

    Google Scholar 

  • Möller-Zinkhan D, Thauer RK (1990) Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch Microbiol 153:215–218

    Google Scholar 

  • Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155:459–465

    Google Scholar 

  • Seely RJ, Fahrney DE (1983) A novel diphospho-P,P′-diester from Methanobacterium thermoautotrophicum. J Biol Chem 258: 10835–10838

    Google Scholar 

  • Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425

    Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulphate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824

    Google Scholar 

  • Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim Biophys Acta 1018:256–259

    Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Google Scholar 

  • Tindall BJ, Stetter KO, Collins MD (1989) A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus. J Gen Microbiol 135:693–696

    Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  • Woese CR, Achenbach L, Rouvière P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol (in press)

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, R.A., Linder, D., Stetter, K.O. et al. N 5,N 10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus . Arch. Microbiol. 156, 427–434 (1991). https://doi.org/10.1007/BF00248722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248722

Key words

Navigation