Skip to main content
Log in

An analysis of a phase field model of a free boundary

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A mathematical analysis of a new approach to solidification problems is presented. A free boundary arising from a phase transition is assumed to have finite thickness. The physics leads to a system of nonlinear parabolic differential equations. Existence and regularity of solutions are proved. Invariant regions of the solution space lead to physical interpretations of the interface. A rigorous asymptotic analysis leads to the Gibbs-Thompson condition which relates the temperature at the interface to the surface tension and curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. I. Rubinstein, “The Stefan Problem”, Am. Math. Soc. Transl. 27, American Mathematical Society, Providence, (1971).

  2. J. R. Ockendon & W. R. Hodgkins, eds., Moving Boundary Problems in Heat Flow and Diffusion, Oxford Univ. Press, Oxford (1975).

    Google Scholar 

  3. D. G. Wilson, A. D. Solomon, & P. T. Boggs, eds., Moving Boundary Problems, Academic Press, New York (1978).

    Google Scholar 

  4. A. Fasano & M. Primicerio, eds., Proce. Montecatini Symposium on Free and Moving Boundary Problems, Springer, Berlin Heidelberg New York (1981).

    Google Scholar 

  5. C. M. Elliott & J. R. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Pitman Publishing, London (1982).

    Google Scholar 

  6. A. Friedman, Variational Principles and Free-Boundary Problems, John Wiley and Sons, New York (1982).

    Google Scholar 

  7. O. A. Oleinik, “A Method of Solution of the General Stefan Problem”, Sov. Math. Dokl. 1 (1960), 1350–1354.

    Article  CAS  PubMed  Google Scholar 

  8. I.I. Kolodner, “Free Boundary Problem for the Heat Equation with Applications to Problems of Change of Phase”, Comm. Pure Appl. Math. 10 (1957), 220–231.

    Google Scholar 

  9. A. Friedman, “The Stefan Problem in Several Space Variables”, Trans. Amer. Math. Soc. 133 (1968), 51–87.

    Google Scholar 

  10. A. Friedman, “Analyticity of the Free Boundary for the Stefan Problem”, Arch. Rational Mech. Anal. 61 (1976), 97–125.

    Google Scholar 

  11. D. Kinderlehrer & L. Nirenberg, “The Smoothness of the Free Boundary in the One Phase Stefan Problem”, Conm. Pure Appl. Math. 31 (1978), 257–282.

    Google Scholar 

  12. L. I. Rubinstein, “The Stefan Problem: Comments on its Present State”, J. Inst. Math. Appl. 24 (1979), 259–278.

    Google Scholar 

  13. L. A. Caffarelli, “Continuity of the Temperature in the Stefan Problem”, Indiana Univ. Math. J. 28 (1979), 53–70.

    Google Scholar 

  14. L. A. Caffarelli, “Some Aspects of the One Phase Stefan Problem”, Indiana Univ. Math. J, 27 (1980), 73–77.

    Google Scholar 

  15. L. A. Caffarelli & L. C. Evans, “Continuity of the Temperature for the Two Phase Stefan Problem”, Arch. Rational Mech. Anal, (to appear).

  16. J. Chad Am & P. Ortoleva, “The Stabilizing Effect of Surface Tension on the Development of Free Boundaries”, Proc. Montecatini Symposium on Free and Moving Boundary Problems, Springer, Berlin Heidelberg New York (1981).

    Google Scholar 

  17. B. Chalmers, Principles of Solidification, R. E. Krieger Publishing, Huntington, New York (1977).

    Google Scholar 

  18. P. Hartman, Crystal Growth: An Introduction, North-Holland Publishing, Amsterdam (1973).

    Google Scholar 

  19. J. W. Gibbs, Collected Works, Yale University Press, New Haven, (1948).

    Google Scholar 

  20. D. W. Hoffman & J. W. Cahn, “A Vector Thermodynamics for Anisotropic Surfaces I. Fundamentals and Application to Plane Surface Junctions”, Surface Science 31 (1972), 368–388.

    Google Scholar 

  21. J. W. Cahn & D. W. Hoffman, “A Vector Thermodynamics for Anisotropic Surfaces II. Curved and Faceted Surfaces”, Acta Metallurgica 22 (1974), 1205–1214.

    Google Scholar 

  22. W. W. Mullins, “The Thermodynamics of Crystal Phases with Curved Interfaces: Special Case of Interface Isotropy and Hydrostatic Pressure”, Proc. Int. Conf. on Solid-Solid Phase Transformations, H. I. Erinson, et al., eds., TMS-AIME, Warrendale, Pennsylvania (1983).

    Google Scholar 

  23. W. W. Mullins, “Thermodynamic Equilibrium of a Crystal Sphere in a Fluid”, J. Chem. Phys. 81 (1984), 1436–1442.

    Google Scholar 

  24. L. D. Landau & E. M. Lifshitz, Statistical Physics, Addison-Wesley Publishing, Reading, Massachusetts (1958).

    Google Scholar 

  25. C. J. Thompson, Mathematical Statistical Mechanics, MacMillan Co., New York (1972).

    Google Scholar 

  26. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford (1971).

    Google Scholar 

  27. J. W. Cahn & J. E. Hilliard, “Free Energy of a Nonuniform System I. Interfacial Free Energy”, J. Chem. Phys. 28 (1957), 258–267.

    Google Scholar 

  28. J. W. Cahn & J. E. Hilliard, “Free Energy of a Nonuniform System III. Nucleation in a Two Componente Incompressible Fluid”, J. Chem. Phys. 31 (1959), 688–699.

    Google Scholar 

  29. J. S. Langer, “Theory of the Condensation Point”, Annals of Physics 41 (1967), 108–157.

    Google Scholar 

  30. P. C. Hohenberg & B. I. Halperin, “Theory of Dynamic Critical Phenomena”, Reviews of Modern Physics 49 (1977), 435–480.

    Google Scholar 

  31. G. Fix & J. T. Lin, Paper in preparation.

  32. W. W. Mullins & R. F. Sekerka, “Morphological Stability of a Particle Growing by Diffusion or Heat Flow”, J. Appl. Physics 34 (1963), 323–329.

    Google Scholar 

  33. W. W. Mullins & R. F. Sekerka, “Stability of a Planar Interface During Solidification of a Dilute Binary Alloy”, J. Appl. Physics 35 (1964), 445–451.

    Google Scholar 

  34. J. R. Ockendon, “Linear and Non-linear Stability of a Class of Moving Boundary Problems”, Proc. Sem. Pavia 1979 Technoprint, Free Boundary Problems 1 (1980), 443–478.

    Google Scholar 

  35. J. Smith, “Shape Instabilities and Pattern Formation in Solidification: A New Method for Numerical Solution of the Moving Boundary Problem”, J. Comp. Physics 39 (1981), 112–127.

    Google Scholar 

  36. J. Smoller, Shock Waves and Reaction —Diffusion Equations, Springer-Verlag, Berlin Heidelberg New York (1983).

    Google Scholar 

  37. H. Weinberger, “Invariant Sets for Weakly Coupled Parabolic and Elliptic Systems”, Rend. Mat. 8 (1975), 295–310.

    Google Scholar 

  38. K. Chueh, C. Conley, & J. Smoller, “Positively Invariant Regions for Systems of Nonlinear Diffusion Equations”, Indiana Univ. Math. J. 26 (1977), 373–392.

    Google Scholar 

  39. J. Bebernes, K. Chueh, & W. Fulks, “Some Applications of Invariance for Parabolic Systems”, Indiana Univ. Math. J. 28 (1979), 269–277.

    Google Scholar 

  40. N. Alikakos, “An Application of the Invariance Principle to Reaction-Diffusion Equations”, J. Diff. Eqns. 33 (1979), 202–225.

    Google Scholar 

  41. H. Amann, “Invariant Sets and Existence Theorems for Semilinear Parabolic and Elliptic Systems”, J. Math. Anal. Appl. 65 (1978), 432–467.

    Google Scholar 

  42. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1964).

    Google Scholar 

  43. D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York (1977).

    Google Scholar 

  44. O. A. Ladyzenskaya, V. A. Solonnikov. & N. N. Uralceva, “Linear and Quasilinear Equations of Parabolic Type”, Trans. of Math. Monographs 23, American Mathematical Society, Providence (1968).

    Google Scholar 

  45. S. D. Eidelman, Parabolic Systems, North Holland Publishing, Amsterdam (1969).

    Google Scholar 

  46. M. S. Berger & L. E. Fraenkel, “On the Asymptotic Solution of a Nonlinear Dirichlet Problem”, J. Math. Mech. 19 (1970), 553–585.

    Google Scholar 

  47. P. Fife & W. M. Greenlee, “Interior Transition Layers for Elliptic Boundary Value Problems with a Small Parameter”, Russian Math. Surveys 29 (1974), 103–131.

    Google Scholar 

  48. A. Van Harten, “Nonlinear Singular Perturbation Problems: Proofs of Correctness of a Formal Approximation Based on a Contraction Principle in a Banach Space”, J. Math. Anal. Appl. 65 (1978), 126–168.

    Google Scholar 

  49. F. A. Howes, “Boundary-interior Layer Interactions in Nonlinear Singular Perturbation Theory”, Mem. Amer. Math. Soc. 203 (1978).

  50. M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York (1977).

    Google Scholar 

  51. K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg New York (1965).

    Google Scholar 

  52. N. Hicks, Notes on Differential Geometry, Van Nostrand, Princeton, New Jersey (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caginalp, G. An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92, 205–245 (1986). https://doi.org/10.1007/BF00254827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00254827

Keywords

Navigation