Skip to main content
Log in

The Rhizobium meliloti early nodulation genes (nodABC) are nitrogen-regulated: Isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The presence of combined nitrogen in the soil suppresses the formation of nitrogen-fixing root nodules by Rhizobium. We demonstrate that bacterial genes determining early nodulation functions (nodABC) as well as the regulatory gene nodD3 are under nitrogen (NH +4 ) control. Our results suggest that the gene product of nodD3 has a role in mediating the ammonia regulation of early nod genes. The general nitrogen regulatory (ntr) system as well as a chromosomal locus mutated in Rhizobium meliloti were also found to be involved in the regulation of nod gene expression. A R. meliloti mutant with altered sensitivity to ammonia regulation was isolated, capable of more efficient nodulation of alfalfa than the wild-type strain in the presence of 2 mM ammonium sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beringer JE, Beynon J, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634

    Google Scholar 

  • Bhuvaneswari TV, Solheim B (1985) Root hair deformation in the white clover/Rhizobium trifolii symbiosis. Physiol Plant 63:25–34

    Google Scholar 

  • Birnboim HC, Doly J (1979) Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    CAS  PubMed  Google Scholar 

  • Boyer HW, Rouland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Bruijn FJ de, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto WW, Ausubel FM, Schell J (1989) Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J Bacteriol 171:1673–1682

    Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985a) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    Google Scholar 

  • Carroll BJ, McNeill DL, Gresshoff PM (1985b) Isolation and properties of soybean (Glycine max (L.) Merr.) mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82:4162–4166

    Google Scholar 

  • Colonna-Romano S, Riccio A, Guida M, Defez R, Lamberti A, Iaccarino M, Arnold W, Priefer U, Pühler A (1987) Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosarum. Nucleic Acids Res 15:1951–1964

    Google Scholar 

  • Dazzo FB, Brill WJ (1978) Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol 62:19–21

    Google Scholar 

  • Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium-nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    Google Scholar 

  • Delves AC, Higgins A, Gresshoff PM (1987) Supernodulation in interspecific grafts between Glycine max (soybean) and Glycine soja. J Plant Physiol 128:473–478

    Google Scholar 

  • Dhaese P, De Greve H, Decraemer H, Schell J, Van Montagu M (1979) Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucleic Acids Res 7:1837–1849

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host-range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Downie JA, Johnston AWB (1986) Nodulation of legumes by Rhizobium: The recognized root? Cell 47:153–154

    Google Scholar 

  • Dusha I, Kovalenko S, Banfalvi Z, Kondorosi A (1987) Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J Bacteriol 169:1403–1409

    Google Scholar 

  • Dusha I, de Bruijn FJ, Kondorosi A, Schell J (1988) The effect of combined nitrogen on nod gene expression in Rhizobium meliloti. In: Bothe H, de Bruijn FJ, Newton W (eds) Nitrogen Fixation: Hundred Years After. Gustav Fischer Verlag, Stuttgart, New York, p 461

    Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588

    Google Scholar 

  • Fischer RF, Brierley HL, Mulligan JT, Long SR (1987) Transcription of Rhizobium meliloti nodulation genes. Identification of a nodD transcription initiation site in vitro and in vivo. J Biol Chem 262:6845–6849

    Google Scholar 

  • Gibson AH, Nutman PS (1960) Studies on the physiology of nodule formation. VII. A reappraisal of the effect of preplanting. Ann Bot 24:420–433

    Google Scholar 

  • Göttfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quinones F, Kondorosi A (1986) At least two nodD genes are necessary for efficient nodulation on alfalfa by Rhizobium meliloti. J Mol Biol 191:411–426

    Google Scholar 

  • Gussin GN, Ronson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591

    Google Scholar 

  • Györgypal Z, Iyer N, Kondorosi A (1988) Three regulatory nodD alleles of diverged flavonoid specificity are involved in host-dependent nodulation by Rhizobium meliloti. Mol Gen Genet 212:85–92

    Google Scholar 

  • Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc Natl Acad Sci USA 84:8558–8562

    Google Scholar 

  • Jacobsen E, Feenstra WJ (1984) A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci Lett 33:337–344

    Google Scholar 

  • Kondorosi E, Kondorosi A (1986) Nodule induction on plant roots by Rhizobium. Trends Biochem Sci 11:296–299

    Google Scholar 

  • Kondorosi A, Svab Z, Kiss GB, Dixon RA (1977) Ammonia assimilation and nitrogen-fixation in Rhizobium meliloti. Mol Gen Genet 151:221–226

    Google Scholar 

  • Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452

    CAS  Google Scholar 

  • Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A (1989) Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8:1331–1340

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Mulligan ST, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613

    CAS  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Google Scholar 

  • Ratet P, Schell J, de Bruijn FJ (1988) Mini-Mulac transposons with broad-host-range origins of conjugal transfer and replication designed for gene regulation studies in Rhizobiaceae. Gene 63:41–52

    Google Scholar 

  • Rolfe BG, Gresshoff PM (1988) Genetic analysis of legume nodule initiation. Annu Rev Plant Physiol Plant Mol Biol 39:297–313

    Google Scholar 

  • Ronson CW, Nixon BT, Albright LM, Ausubel FM (1987) Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J Bacteriol 169:2424–2431

    Google Scholar 

  • Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 83:757–761

    Google Scholar 

  • Schmidt J, Wingender R, John M, Wieneke U, Schell J (1988) Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc Natl Acad Sci USA 85:8578–8582

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) Vector plasmids for in vivo and in vitro manipulation of gram-negative bacteria. In: Pühler A (ed) Molecular Genetics of the Bacteria-Plant Interaction. Springer-Verlag, Berlin, pp 98–106

    Google Scholar 

  • Streeter J (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. CRC Crit Rev Plant Sci 7:1–24

    Google Scholar 

  • Szeto WW, Nixon BT, Ronson CW, Ausubel FM (1987) Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol 169:1423–1432

    Google Scholar 

  • Truchet GL, Dazzo FB (1982) Morphogenesis of lucerne root nodules incited by Rhizobium meliloti in the presence of combined nitrogen. Planta 154:352–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R.G. Hermann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dusha, I., Bakos, A., Kondorosi, A. et al. The Rhizobium meliloti early nodulation genes (nodABC) are nitrogen-regulated: Isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium. Molec. Gen. Genet. 219, 89–96 (1989). https://doi.org/10.1007/BF00261162

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261162

Key words

Navigation