Skip to main content
Log in

The effect of pH and temperature manipulation on metabolite composition during acidogenesis in a hybrid anaerobic digester

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

A synthetic medium containing 9 g/l sucrose was hydrolyzed in a novel hybrid reactor. A minimum hydraulic retention time (HRT) of 9.9 h, with a gas production rate of 1.07 m3/m3·d, was obtained without continuous neutralization. A viable anaerobic cell count of 109 organisms/ml was obtained in the reactor fluid. The results showed that both pH and temperature significantly influenced the type and concentration of the various metabolites formed. These include ethanol, formic, acetic, propionic and butyric acids as primary metabolites and caproic acid as secondary metabolite. From the results obtained, it is suggested that to obtain the energetically most favourable products, a substrate pH of 6.5 and a temperature of 35°C must be used in anaerobic acidogenic digesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker CA, Claus GW, Taylor PA (1983) Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids. Appl Environ Microbiol 46:1214–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breure AM, Van Andel JG, Burger-Wiersma T, Guijt J, Verkuijlen J (1985) Hydrolysis and acidogenic fermentation of gelatin under anaerobic conditions in a laboratory scale upflow reactor. Appl Microbiol Biotechnol 21:50–54

    Article  CAS  Google Scholar 

  • Bryant MP (1967) The microbiology of anaerobic degradation and methanogenesis with special reference to sewage. In: Schlegel HG (ed) Seminar of microbial energy conversion. Erich Goltze KG, Göttingen 107–117

    Google Scholar 

  • Bryant MP (1969) Microbial methane production — theoretical aspects. J Animal Sci 48:193–201

    Article  Google Scholar 

  • Cohen A Zoetemeyer RJ, Van Deursen A, Van Andel JG (1979) Anaerobic digestion of glucose with separated acid production and methane formation. Water Res 13:571–580

    Article  CAS  Google Scholar 

  • Fan LT, Erickson LE, Battes JC, Shah PS (1973) Analysis and optimization of two-stage digestion. J Water Pollut Control Fed 45:591–610

    CAS  Google Scholar 

  • Hattingh WHJ, Kotze JP, Thiel PG, Toerien DF, Siebert ML (1967) Biological changes during the adaptation of an anaerobic digestor to a synthetic substrate. Water Res 1:255–277

    Article  CAS  Google Scholar 

  • Heyes RH, Hall RJ (1981) Anaerobic digestion modelling —the role of H2. Biotechnol Lett 3:431–436

    Article  CAS  Google Scholar 

  • Hobson PN, Shaw BG (1974) The bacterial population of piggerywaste anaerobic digesters. Water Res 8:507–516

    Article  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology 3B. Norris JR, Ribbons DW (eds)

  • Mah RA, Sussman C (1967) Microbiology of anaerobic sludge fermentations. 1. Enumeration of the Non-methanogenic anaerobic bacteria Appl. Microbiol 16:358–361

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacteria that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Article  CAS  Google Scholar 

  • Meyer LC, Hugo AB, Britz TJ, De Witt B, Lategan PM (1983) Temperature control for laboratory scale anaerobic digesters. Water SA 9:79–80

    Google Scholar 

  • Miller TL, Wolin MJ (1974) A serum-bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nel LH, Britz TJ, Lategan PM (1985) The effect of trace elements on the performance efficiency of an anaerobic fixed film reactor treating a petrochemical effluent. Water SA 11:107–110

    CAS  Google Scholar 

  • Pipyn P, Verstraete W (1981) Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol Bioeng 23:1145–1154

    Article  CAS  Google Scholar 

  • Thauer R, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toerien DF, Siebert ML, Hattingh WHJ (1967) The bacterial nature of the acid forming phase of anaerobic digestion. Water Res 1:497–507

    Article  CAS  Google Scholar 

  • Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoetemeyer RJ, Matthijsen AJCM, Van den Heuvel JC, Cohen A, Boelhower C (1982a) Anaerobic acidification of glucose in an upflow reactor. Biomass 2:187–199

    Article  CAS  Google Scholar 

  • Zoetemeyer RJ, Van den Heuvel JC, Cohen A (1982b) pH Influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Res 16:303–311

    Article  CAS  Google Scholar 

  • Zoetemeyer RJ, Arnoldy P, Cohen A, Boelhower C (1982c). Influence of temperature on the anaerobic acification of glucose in a mixed culture forming part of a two-stage digestion process. Water Res 16:313–321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joubert, W.A., Britz, T.J. The effect of pH and temperature manipulation on metabolite composition during acidogenesis in a hybrid anaerobic digester. Appl Microbiol Biotechnol 24, 253–258 (1986). https://doi.org/10.1007/BF00261547

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261547

Keywords

Navigation