Skip to main content
Log in

Functional mRNA half lives in E. coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Analysis of the synthetic rate of individual protein species at various times after complete inhibition of transcription with either streptolygidin or rifampicin was carried out by two-dimensional polyacrylamide electrophoresis of total Escherichia coli cell extracts. The decay rate of the potential to synthesize different proteins was assumed to be equal to the functional decay rate of the corresponding mRNA. We conclude the following: (a) The tufA and tufB messengers have different half lives (3.0 and 2.4 min, recpectively). (b) Different genes within the same transcriptional unit can have different half lives (S7, EFG and EFTuA — 2.5, 3.8 and 3.0 min, respectively). (c) There is at least a twenty-fold variation in individual mRNA half lives in E. coli; ribosomal protein Sl mRNA was observed to have the shortest half life in the cell (40 sec), while the longest observed half life was approximately 20 min (all values at 30°C). (d) addition of rifampicin increases the absolute rate of RNA polymerase subunit α and β synthesis twofold. (e) The induction of the synthesis of α subunit of RNA polymerase takes palce without a concomitant induction of ribosomal protein S4 and L17, which are reported to be on either side of α in the same transcriptional unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RIF:

rifampicin

STL:

streptolygidin

EF-Tu and EF-G:

Elogation Factors Tu and G

References

  • Bendiak, D., Parker, J., Friesen, J.: Fine-structure mapping of the rts, rplK, rplL and rpoB genes of Escherichia coli. J. Bact. 129, 536–539 (1977)

    Google Scholar 

  • Blundell, M., Craig, E., Kennell, D.: Decay rates of different mRNA in E. coli and models of decay. Nature (Lond.) New Biol. 238, 46–49 (1972)

    Google Scholar 

  • Cassani, G., Burgess, R., Goodmann, H., Gold, L.: Inhibition of RNA polymerase by streptolygidin. Nature (Lond.) New Biol. 230, 197–200 (1971)

    Google Scholar 

  • Clark, D., Maaløe, O.: DNA Replication and the division cycle in Escherichia coli. J. molec. Biol. 23, 99–112 (1967)

    Google Scholar 

  • Dennis, P.: Synthesis and stability of individual ribosomal proteins in the presence of rifampicin. Molec. gen. Genet. 134, 39–47 (1974)

    Google Scholar 

  • Forchhammer, J., Jackson, E.N., Yanofsky, C.: Different half-lives of messenger RNA corresponding to different segments of the tryptophan operon of Escherichia coli. J. Molec. Biol. 71, 687–699 (1972)

    Google Scholar 

  • Fowler, A.V., Zabin, I.: The amino acid sequence of β-galactosidase of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 74, 1507–1510 (1977)

    Google Scholar 

  • Furano, A.: The elongation factor Tu coded by the tufA gene of Escherichia coli is almost identical to that coded by the tufB gene. J. biol. Chem. 252, 2154–2157 (1977)

    Google Scholar 

  • Hayward, R.S., Fyfe, S.K.: Over synthesis and instability of sigma protein in a merodiploid strain of Escherichia coli. molec. gen. Genet. 159, 89–99 (1978a)

    Google Scholar 

  • Hayward, R.S., Fyfe, S.K.: Non-coordinate expression of the neighbouring genes rplL and rpoB, C of Escherichia coli. Molec. gen. Genet. 160, 77–80 (1978b)

    Google Scholar 

  • Hayward, R.S., Tittawella, I.P.B., Scaife, J.G.: Evidence for specific control of RNA polymerase synthesis in Escherichia coli. Nature (Lond.) New Biol. 234, 6–9 (1973)

    Google Scholar 

  • Hirashima, A., Childs, G., Inouye, M.: Different inhibitory effects of antibiotics on the biosynthesis of envelope proteins of escherichia coli. J. molec. Biol. 79, 373–389 (1973)

    Google Scholar 

  • Kaltschmidt, E., Wittmann, H.G.: Ribosomal proteins VII. Two dimensional polyacryl amide gel electrophoresis for finger printing of ribosomal proteins. Analyt. Biochem. 36, 401–412 (1970)

    Google Scholar 

  • Kurland, C.G., Voynow, P., Hardy, S.J.S., Randall, L., Lutter, L.: Physical and functional heterogeneity of E. coli ribosomes, pp. 17–24. Cold Spr. Harb. 1969

  • Levy, S.B.: Very Stable Prokaryotic Messenger RNA in chromosomeless Escherichia coli minicells. Proc. nat. Acad. Sci. (Wash.) 72, 2900–2904 (1975)

    Google Scholar 

  • Lindhal, L., Nomura, M.: In: Alfred Benzon Symposium IX: Control of ribosome synthesis (Kjeldgaard and Maaløe, eds.), pp. 206–217. New York: Academic Press 1976

    Google Scholar 

  • Lindahl, L., Post, L., Zengel, J., Gilbert, S.F., Strycharz, W.: Mapping of ribosomal protein genes by in vitro protein synthesis using DNA fragments-of λfus3 transducing phage DNA as templates. J. biol. Chem. 252, 7365–7483 (1977)

    Google Scholar 

  • Miller, D.L., Nargarkatti, S., Laursen, R.A., Parker, J., Friesen, J.F.: A comparison of the activities of the products of the two genes for elongation factor Tu. Molec. gen. Genet. 159, 57–62 (1978)

    Google Scholar 

  • Neidhardt, F.C., Block, P.L., Smith, D.F.: Culture medium for entero Bacteria. J. Bact. 109, 736–747 (1974)

    Google Scholar 

  • O'Farrell, P.H.: High resolution two-dimensional electrophoresis of proteins. J. biol. Chem. 250, 4007–4021 (1975)

    Google Scholar 

  • Pato, M., Meyenburg, K. von: Residual RNA synthesis in Escherichia coli after inhibition of initiation of transcription by rifampicin. Cold Spr. Harb. Symp. quant. Biol. 35, 497–504 (1970)

    Google Scholar 

  • Pedersen, S., Block, P.L., Rech, S., Neidhardt, F.: Patterns of protein synthesis in E. coli: A catalog of the amount of 140 individual proteins in different growth rates. Cell 14, 179–186 (1978a)

    Google Scholar 

  • Pedersen, S., Blumenthal, R.M., Reeh, S., Parker, J., Lemaux, P., Laursen, R.A., Nagarkatti, S., Friesen, J.D.: A mutant of Escherichia coli with an altered elongation facotr Tu. Proc. nat. Acad. Sci. (Wash.) 73, 1698–1701 (1967b)

    Google Scholar 

  • Pedersen, S., Reeh, S., Friesen, J.D., Block, P.L., Neidhardt, F.C.: A nomenclature for E. coli proteins. Cell 14, 186–190 (1978b)

    Google Scholar 

  • Pedersen, S., Reeh, S., Parker, J., Watson, R.J., Friesen, J.D., Fiil, N.P.: Analysis of the proteins synthesized in ultraviolet light-irradiated Escherichia coli following infection with the bacteriophage λdrifd 18 and λdfus3. Molec. gen. Genet. 144, 339–344 (1976a)

    Google Scholar 

  • Pichon, J., Coeroli, C., Marchis-Moureu, G.: Studies on ribosomal protein biosynthesis in an RNA polymerase temperature sensitive E. coli mutant. Molec. gen. Genet. 150, 257–264 (1977)

    Google Scholar 

  • Rech, S., Pedersen, S.: Regulation of Escherichia coli elongation factor synthesis In vivo. 11th FEBS Symposium, Vol. 43, pp. 89–98. Oxford: Pergamon Press 1977

    Google Scholar 

  • Reeh, S., Pedersen, S., Fiiesen, J.D.: Biosynthetic regulation of individual proteins in relA+ and relA strains of Escherichia coli during amino acid starvation. Molec. gen. Genet. 149, 279–289 (1976)

    Google Scholar 

  • Sekiguchi, M., Iida, S.: Mutants of Escherichia coli permeable to actinomycin. Proc. nat. Acad. Aci. (Wash.) 58, 2315–2320 (1967)

    Google Scholar 

  • Sippel, A., Hartmann, G.: Mode of action of rifampicin on the RNA polymerase reaction. Biochim. biophys. Acta (Amst.) 157, 218–219 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, S., Reeh, S. & Friesen, J.D. Functional mRNA half lives in E. coli . Molec. Gen. Genet. 166, 329–336 (1978). https://doi.org/10.1007/BF00267626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267626

Keywords

Navigation