Skip to main content
Log in

An explanation of fine structure map expansion in terms of excision repair

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Fine structure map expansion is a marker effect which can be explained on the basis of the repair of mismatched bases in hybrid DNA. The chance of a mismatched base pair being corrected independently of a closely linked mismatched pair will sharply increase as the distance between the two sites becomes greater than the length of the DNA segment involved in the correction process. The consequences of this explanation are worked out and it is shown that, if it is true, the mapping curve should show three phases: an initial additive phase when the recombining sites are closely linked, a phase of increased slope—map expansion-and a final additive phase of reduced slope beyond the expansion region. Comparison of the initial and final slopes should yield information on the relation between gene conversion and crossing-over. Many sets of experimental data show a clear transition from the initial additive region to that of map expansion, but evidence for the predicted final phase is scanty, possibly because fine structure maps cover too small a region of the chromosome. Using data from genes with known products, estimates can be made of the minimum length of the DNA segments involved in correction. These are calculated as about 40 nucleotides in fission yeast and at least 130 nucleotides in Neurospora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carsiotis, M., Appella, E., Provost, P., Germershausen, J., Suskind, S. R.: Chemical and physical studies of the structure of tryptophan synthetase fromNeurospora crassa. Biochem. biophys. Res. Commun.18, 877–888 (1965).

    Article  CAS  Google Scholar 

  • de Lucia, P., Cairns, J.: Isolation of anE. coli strain with a mutation affecting DNA polymerase. Nature (Lond.)224, 1164–1166 (1969).

    Article  Google Scholar 

  • Emerson, S.: Linkage and recombination at the chromosome level. In: Genetic organisation I. (ed. by E. W. Caspair and A. W. Ravin), p. 267. New York: Academic Press 1969.

    Google Scholar 

  • Fogel, S., Mortimer, R. K.: Informational transfer in meiotic gene conversion. Proc. nat. Acad. Sci. (Wash.)62, 96–103 (1969).

    Article  CAS  Google Scholar 

  • Goodman, H. M., Abelson, J., Landy, A., Brenner, S., Smith, J. D.: Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature (Lond.)217, 1019–1024 (1968).

    Article  CAS  Google Scholar 

  • Hawthorne, D. C.: The selection of nonsense suppressors in yeast. Mutation Res.7, 187–197 (1969).

    Article  CAS  Google Scholar 

  • Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res. Camb.5, 282–304 (1964).

    Article  Google Scholar 

  • —: Genetic recombination in fungi. In: Replication and recombination of genetic material (ed. by W. J. Peacock and R. D. Brock), p. 157. Canberra: Australian Academy of Science 1968.

    Google Scholar 

  • —, Whitehouse, H. L. K.: The wrong way to think about gene conversion? Molec. Gen. Genetics107, 85–93 (1970).

    Article  CAS  Google Scholar 

  • Kelly, R. B., Atkinson, M. R., Huberman, J. A., Kornberg, A.: Excision of thymine dimers and other mismatched sequences by DNA polymerase ofEscherichia coli. Nature (Lond.)224, 495–501 (1969).

    Article  CAS  Google Scholar 

  • Kornberg, A.: Active centre of DNA polymerase. Science163, 1410–1418 (1969).

    Article  CAS  Google Scholar 

  • Leupold, U.: Intragene Rekombination und allele Komplementierung. Arch. Klaus-Stift. Vererb.-Forsch.36, 89–117 (1961).

    CAS  Google Scholar 

  • —: Genetic studies on nonsense suppressors inSchizosaccharomyces pombe. (Abstr.) Heredity,25, 493 (1970).

    Google Scholar 

  • Leupold, U. Hofer, F.: In preparation (1970).

  • Mousseau, J.: Analyse de la structure fine d'un gène chezAscobolus immersus. Contribution à l'étude de la recombination méiotique. Thesis. University of Paris (1967).

  • Norkin, L. C.: Marker-specific effects in genetic recombination. J. Molec. Biol.51, 633 (1970).

    Article  CAS  Google Scholar 

  • Rossignol, J.-L.: Phenomènes de recombinaison intragénique et unité fonctionelle d'un locus chez l'Ascobolus immersus. Thesis, University of Paris (1964).

  • — Existence of homogeneous categories of mutants exhibiting various conversion patterns in gene 75 ofAscobolus immersus. Genetics63, 795–805 (1969)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi, O. H.: The genetic fine structure of thepaba-1 region ofAspergillus nidulans. Genet. Res. Camb.3, 69–80 (1962).

    Article  Google Scholar 

  • —, Putrament, A.: Polarized negative interference in thepaba-1 region ofAspergillus nidulans. Genet. Res. Camb.4, 12–20 (1963).

    Article  Google Scholar 

  • Smith, B. R.: Interallelic recombination at thehis-5 locus inNeurospora crassa. Heredity20, 257–276 (1965).

    Article  CAS  Google Scholar 

  • Spatz, H. Ch., Trautner, T. A.: One way to do experiments on gene conversion? Transfection with heteroduplexSPP1 DNA. Molec. Gen. Genetics109, 84–106 (1970).

    Article  CAS  Google Scholar 

  • Suyama, Y., Lacy, A. M., Bonner, D. M.: A genetic map of thetd locus ofNeurospora crassa. Genetics49, 135–144 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehouse, H. L. K., Hastings, P. J.: The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. Camb.6, 27–92 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. H. Pritchard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fincham, J.R.S., Holliday, R. An explanation of fine structure map expansion in terms of excision repair. Molec. Gen. Genet. 109, 309–322 (1970). https://doi.org/10.1007/BF00267701

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267701

Keywords

Navigation