Skip to main content
Log in

Production of petites by cell cycle mutants of Saccharomyces cerevisiae defective in DNA synthesis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Mutations in two genes (cdc8 and cdc21) required for nuclear and mitochondrial DNA synthesis in Saccharomyces cerevisiae result in a 6- to 11-fold increase in the rate of mitotic segregation of petites at the permissive temperature. The defect in DNA replication and the increased rate of petite production result from the same mutation since the two phenotypes cosegregate and corevert. Most of the petites isolated from strains carrying mutations in cdc8 and cdc21 contain mtDNA. Therefore, the petites do not result simply from an underreplication of mitochondrial DNA. The mutation rates for nuclear and mitochondrial genes are the same in cdc8, cdc21 and their wild-type parent. Therefore the petites are unlikely to result from an increase in the rate of base pair substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bisson, L., Thorner, J.: Thymidine-5′-monophosphate-requiring mutants of Saccharomyces. J. Bacteriol. 132, 44–50 (1977)

    Google Scholar 

  • Brendel, M.: A simple method for the isolation and characterization of thymidylate uptaking mutants in Saccharomyces cerevisiae. Mol. Gen. Genet. 147, 209–215 (1976)

    Google Scholar 

  • Brendel, M., Fäth, W.W., Laskowski, W.: Isolation and characterization of mutants of Saccharomyces cerevisiae able to grow after inhibition of dTMP synthesis. In: Methods in cell biology, Vol. XI (D.M. Prescott, ed.). New York:Academic Press 1975

    Google Scholar 

  • Bridges, B.A., Law, J., Munson, R.J.: Mutagenesis in Escherichia coli. II. Evidence for a common pathway for mutagenesis by ultraviolet light, ionizing radiation and thymine deprivation. Mol. Gen. Genet. 103, 266–273 (1968)

    Google Scholar 

  • Clark-Walker, G.D., Miklos, G.L.G.: Complementation in cytoplasmic petite mutants of yeast to form respiratory competent cells. Proc. Natl. Acad. Sci. U.S.A. 72, 372–375 (1975)

    Google Scholar 

  • Drake, J.W.: The genetic control of spontaneous and induced mutation rates in bacteriophage T4. Genetics (Suppl.) 73, 45–64 (1973)

    Google Scholar 

  • Game, J.C.: Yeast cell-cycle mutant cdc21 is a temperature-sensitive thymidylate auxotroph. Mol. Gen. Genet. 146, 313–315 (1976)

    Google Scholar 

  • Hartwell, L.H.: Macromolecular synthesis in temperature-sensitive mutants of yeast. J. Bacteriol. 93, 1662–1670 (1967)

    Google Scholar 

  • Hartwell, L.H., Mortimer, R.K., Culotti, J., Culotti, M.: Genetic control of the cell division cycle in yeast. V. Genetic analysis of ede mutants. Genetics 74, 267–286 (1973)

    Google Scholar 

  • Hereford, L. M., Hartwell, L.H.: Defective DNA synthesis in permeabilized yeast mutants. Nature New Biol. 234, 171–172 (1971)

    Google Scholar 

  • James, A.P.: A genetic analysis of ‘sectoring’ of ultraviolet-induced variant colonies of yeast. Genetics 40, 204–213 (1955)

    Google Scholar 

  • Magni, G.E., von Borstel, R.C.: Different rates of spontaneous mutation during mitosis and meiosis in yeast. Genetics 47, 1097–1108 (1962)

    Google Scholar 

  • Mortimer, R.K., Hawthorne, D.C.: Yeast genetics. In: The yeasts I. (Rose and Harrison, eds.). New York: Academic Press 1969

    Google Scholar 

  • Newlon, C.S., Fangman, W.L.: Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae. Cell 5, 423–428 (1975)

    Google Scholar 

  • Newlon, C.S., Petes, T.D., Hereford, L.M., Fangman, W.L.: Replication of yeast chromosomal DNA. Nature 247, 32–35 (1974)

    Google Scholar 

  • Ogur, M., St.John, R., Nagai, S.: Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125, 928–929 (1957)

    Google Scholar 

  • Petes, T.D., Fangman, W.L.: Preferential synthesis of yeast mitochondrial DNA in α factor-arrested cells. Biochem. Biophys. Res. Commun. 55, 603–609 (1973)

    Google Scholar 

  • Plischke, M.E., von Borstel, R.C., Mortimer, R.K., Cohn, W.E.: Genetic markers and associated gene products in Saccharomyces cerevisiae. In: Handbook of biochemistry and molecular biology nucleic acids, Vol. 2 (Fasman, ed.). Cleveland, Ohio: CRC Press 1975

    Google Scholar 

  • Schweyen, R.J., Backhaus, B., Mathews, S., Kaudewitz, F.: On the formation of rho- petites in yeast: Mapping by rho- deletion analysis and rho+ x rho+ recombination analysis of mitochondrial genes in Saccharomyces cerevisiae. In: Genetics, biogenesis and bioenergetics of mitochondria (Bandlow, Schweyen, Thomas, Wolf, Kaudewitz, eds.). Berlin: De Gruyter 1976a

    Google Scholar 

  • Schweyen, R.J., Steyrer, U., Kaudewitz, F., Duijon, B., Slonimski, P.P.: Mapping of mitochondrial genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 146, 117–132 (1976b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newlon, C.S., Ludescher, R.D. & Walter, S.K. Production of petites by cell cycle mutants of Saccharomyces cerevisiae defective in DNA synthesis. Molec. Gen. Genet. 169, 189–194 (1979). https://doi.org/10.1007/BF00271670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271670

Keywords

Navigation