Skip to main content
Log in

Interferometric investigation of convection in plexiglas boxes

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Real-time holographic interferometry is used to study free convection in cavities heated from below and bounded by Plexiglas windows. Advantages and shortcomings of this visualization technique applied to such Plexiglas boxes are discussed. As Plexiglas has a high temperature-dependent refractive index, temperature fields in the windows and the fluid layer are visualized. These visualizations furnished proof of a pronounced thermal influence of the walls on the flow pattern based on what we call “thermal memory” of Plexiglas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

absorption

b :

width

cp :

specific heat

d :

gap width

g :

acceleration of gravity

H :

damping factor

h :

height

k :

heat conductivity

l :

length

m :

number

n :

refractive index

Pr :

Prandtl-number, gn/gk

Ra :

Rayleigh number, βgΔT h3 (ν · κ)−1

S :

number of fringes

T :

temperature

ΔT :

temperature difference across h

t :

time

x,y :

Cartesian coordinates

Y :

full width of Hele-Shaw cell

α:

wavenumber

β:

coefficient of thermal expansion

λ:

length

ɛ:

angle

κ:

thermal diffusivity

ν:

kinematic viscosity

ϱ:

density

τ:

dimensionless time, t/(h2f)

c :

critical

f :

fluid

osc :

oscillatory

w :

wall

References

  • Aung, W.; O'Reagan. R. 1971: Precise measurement of heat transfer using holographic interferometry. Rev. Sci. Instr. 42, 1755–1759

    Google Scholar 

  • Beach. K. W.; Muller. R. H.; Tobias, C. W. 1973: Light-deflection effects in the interferometrv of one-dimensional refractiveindex fields. J. Opt. Soc. Am 5. 559–566

    Google Scholar 

  • Behringer, R. P.; Agosta, C.: Jan. J. S.: Schaumeyer. J. N. 1980: Time-dependent Rayleigh-Bénard convection and instrumental attenuation. Phys. Lett. 80 A, 273–276

    Google Scholar 

  • Buchave, P. 1981: Laser Doppler measurements in media with refractive index fluctuations. Skovlunde: DISA Elektronik

    Google Scholar 

  • Buchave, P.; George. W. K. Jr.: Lumley. J. L. 1979: The measurement of turbulence with the Laser-Doppler Anemometer. Ann. Rev. Fluid Mech. 11. 443–503

    Google Scholar 

  • Busse. F. H. 1978: Non-linear properties of thermal convection. Rep. Progr. Phys. 41, 1929–1967

    Google Scholar 

  • Dubois. M. 1981: Approach of the turbulence in hydrodynamic instabilities. In: Symmetries and Brocken Symmetries (ed. N. Boccara) Paris, IDSET

    Google Scholar 

  • Dubois. M.. Bergé, P. 1980: Experimental evidence for the oscillators in a convective biperiodic regime. Phys. Lett. 76A, 53–56

    Google Scholar 

  • Dubois, M.; Bergé, P. 1981: Instabilités de couche limite dans un fluide en convection; Evolution vers la turbulence. J. Phys. 42, 167–174

    Google Scholar 

  • Elder, J. W, 1968: The unstable thermal interface. J. Fluid Mech. 32,69–96

    Google Scholar 

  • Foster, T. D. 1969: The effect of initial conditions and lateral boundaries on convection. J. Fluid Mech. 37, 81–94

    Google Scholar 

  • Frick. H.; Clever, R. M. 1982: The influence of sidewalls on infinite amplitude convection in a layer heated from below. J. Fluid Mech. 114, 467–480

    Google Scholar 

  • Gollub, J. P.; Benson, S. V. 1980: Many routes to turbulent convection. J. Fluid Mech. 100, 449–470

    Google Scholar 

  • Gollub, J. P.: McCarriar, A. R.; Steinman. J. F. 1982: Convective pattern evolution and secondary instabilities. J. Fluid Mech. 125,259–281

    Google Scholar 

  • Haut. W.; Grigull, U. 1970: Optical methods in heat transfer. Adv. Heat Transfer 6, 133–366

    Google Scholar 

  • Kahl, G. D.; Mylin, D. C. 1965: Refractive deviation errors of interferograms. J. Opt. SOC. Am. 55. 364–372

    Google Scholar 

  • Koschmieder, E. L. 1969: On the wavelength of convective motions. J. Fluid Mech. 35, 527–530

    Google Scholar 

  • Koschmieder, E. L. 1981: Experimental aspects of hydrodynamic instabilities. In: Order and fluctuations in equilibrium and nonequilibrium statistical mechanics (ed. G. Nicolis, G. Dewel, J. W. Turner), pp. 159–188. New York: Wiley

    Google Scholar 

  • Koster, J. N. 1982 a: Heat transfer in vertical gaps. Int. J. Heat Mass Transfer 25, 426–428

    Google Scholar 

  • Koster, J. N. 1982 b: Méthodes expérimentales en convection naturelle. KfK 3419B, Kemforschungszentrum Karlsruhe

  • Koster, J. N.; Müller, U. 1982: Free convection in vertical gaps. J. Fluid Mech. 125, 429–451

    Google Scholar 

  • Mayinger, F.; Panknin, W. 1974: Holography in heat and mass transfer. In: Proc. 5th Int. Heat Transfer Conf. Tokyo, 6, 28–43

    Google Scholar 

  • McDougall, T. J. 1979: On the elimination of refractive-index variations in turbulent density-stratified liquid flows. J. Fluid Mech. 93, 83–96

    Google Scholar 

  • Merzkirch, W. 1974: Flow visualization. New York: Academic Press

    Google Scholar 

  • Ostrovsky, Yu. I.; Butusov, M. M.; Ostrovskaya, G. V. 1980: Interferometry by holography. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Sernas. V.; Fletcher, L. S.; Aung, W. 1972 Heat transfer measurements with Wollaston prism Schlieren interferometer. ASME-Paper 72-HT-9

  • Vest. C. M. 1979: Holographic Interferometry. New York: Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koster, J.N. Interferometric investigation of convection in plexiglas boxes. Experiments in Fluids 1, 121–128 (1983). https://doi.org/10.1007/BF00272010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272010

Keywords

Navigation