Skip to main content
Log in

A new method to measure homogeneous nucleation rates in shock tubes

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The centered expansion wave of a shock tube is utilized to expand and supersaturate a condensable vapor in small concentration in an inert carrier gas. The supersaturated state, located at the rear of the expansion wave, is preserved for a controlled period and then terminated by a recompressing shock wave. During the period of supersaturation, condensation nuclei are formed homogeneously. The nucleation rate is measured as a function of supersaturation by a Mie-light scattering technique. The method is tested using water and the results are compared with classical nucleation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

speed of sound

d :

distance of observer from scattering particle

D :

distance between observation station and virtual origin in the expansion fan of the shock tube

Δ * :

increase of the free energy of the system for the formation of one droplet of critical size

I :

intensity of scattered light

I o :

average intensity of incident light illuminating droplet

J :

nucleation rate

k :

Boltzmann constant

K :

preexponential factor in J = K exp (− ΔG */kT)

M :

Mach number

n :

index of refraction

N :

number of droplets in scattering volume

p :

pressure

r :

radius of droplet

r * :

radius of nucleus of critical size

R :

universal gas constant

S :

saturation ratio, S=yp/p (T)

t :

time

T :

temperature or relative scattered intensity

r :

scattering volume

\(\bar V\) :

molar volume

gl:

distance upstream from virtual origin of expansion fan

y :

mole fraction of condensable vapor in carrier

γ:

gas ratio of specific heats

λ:

wavelength of laser

ϕ:

scattering angle

σ:

surface tension

1:

driven side of shock tube, initial state

2:

state behind initial shock

3:

state at tail of expansion wave

4:

driver side of shock tube, initial state

exp:

experimental

n:

nucleation at observation station

nc:

nucleation (corrected) along path of fluid element

s:

at saturation, i.e. where the adiabatic expansion attains saturation of the vapor

t:

mixing tank

w:

water

∞:

flat surface equilibrium

References

  • Anderson, R. J.; Miller, R. C.; Kassner, J. L., Hagen, D. C. 1980: A study of homogeneous condensation-freezing nucleation of small water droplets in an expansion cloud chamber. J. Atmos. Sci. 37, 2509

    Google Scholar 

  • Becker, R.; Döring, W. 1935: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 24, 719

    Google Scholar 

  • Kassner, J. L., Jr., Carstens, J. C.; Vietti, M. A.; Biermann, A. H., Yue, P. C. P.; Allen, L. B.; Eastburn, M. R.; Hoffman, D. D.; Noble, H. A., Packwood, D. L. 1968: Expansion cloud chamber technique for absolute Aitken nuclei counting. J. Rech. Atmos. 3, 45

    Google Scholar 

  • Kotake, S.; Glass, I. I. 1981: Flows with nucleation and condensation. Prog. Aerosp. Sci. 19, 129

    Google Scholar 

  • Lee, C. F. 1978: An experimental investigation of the critical supersaturation of five vapors in a Shock tube. Ph.D. Thesis, Yale Univ., New Haven, USA

    Google Scholar 

  • Liepmann, H. W.; Roshko, A. 1975: Elements of Gasdynamics. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Mirabel, P.; Katz, J. L. 1977: Condensation of a supersaturated vapor IV. The homogeneous nucleation of binary mixtures. J. Chem. Phys. 67, 1697

    Google Scholar 

  • Peters, F. 1982: Homogeneous nucleation of ethanol and npropanol in a shock tube. J. Chem. Phys. 77, 4788

    Google Scholar 

  • Van de Hulst, H. C. 1957: Light Scattering of Small Particles. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Volmer, M. 1939: Kinetik der Phasenbildung. Leipzig: Steinkopff

    Google Scholar 

  • Volmer, M.; Flood, H. 1934: Tröpfchenbildung in Dämpfen. Z. Phys. Chem. 170, 273

    Google Scholar 

  • Volmer, M.; Weber, A. 1926: Keimbildung in übersättigten Dämpfen. Z. Phys. Chem. 119, 277

    Google Scholar 

  • Wagner, P. E.; Stey, R. 1981: Homogeneous nucleation rates of water vapor measured in a two-piston expansion chamber. J. Phys. Chem. 85. 2694

    Google Scholar 

  • Wegener, P.; Lundquist, G. 1951: Condensation of water vapor in the shock tube below 150 K. J. Appl. Phys. 22, 233

    Google Scholar 

  • Wegener, P. P.; Wu, B. J. C. 1977: Gasdynamics and homogeneous nucleation. Adv. Colloid Interface Sci. 7, 325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, F. A new method to measure homogeneous nucleation rates in shock tubes. Experiments in Fluids 1, 143–148 (1983). https://doi.org/10.1007/BF00272013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272013

Keywords

Navigation