Skip to main content
Log in

Renal countercurrent system: Role of collecting duct convergence and pelvic urea predicted from a mathematical model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A differential equation model of the renal countercurrent system has been developed and physiological data from nephron segments were incorporated together with recently suggested urea recycling from renal pelvis to inner medulla and, particularly, an exponential reduction in the number of collecting tubules towards the renal papilla. The role of these features for the countercurrent concentrating mechanism has been studied by simulation runs. The computations, using the multiple shooting method, provide predictions about concentration profiles for salt and urea in tubes (nephron segments) and in the central core along the entire medullary countercurrent system. The results indicate that this model, without active salt or urea transport in the inner medulla, yields concentration gradients along the medullary axis compatible with those measured in the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Zahid, G., Schafer, J. A., Troutman, S. L., Andreoli, T. E.: The effect of antidiuretic hormone in water and salt permeation, and the activation energies for these processes, in mammalian cortical collecting tubules. Evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J. Membrane Biol. 31, 103–129 (1977)

    Google Scholar 

  • Beck, F., Dotzel, W., Rick, R., Dörge, A., Thurau, K.: Electron microprobe analysis of cellular element concentration in rat renal papilla during different states of diuresis (Abstract). Pflügers Arch. 391, 67 (1981)

    Google Scholar 

  • Bonventre, J. V., Lechene, C.: Renal medullary concentrating process: An integrative hypothesis. Am. J. Physiol. 239, F578-F588 (1980)

    Google Scholar 

  • Bonventre, J. V., Karnovsky, M. J., Lechene, C. P.: Renal papillary epithelial morphology in antidiuresis and water diuresis. Am. J. Physiol. 235, F69-F76 (1978)

    Google Scholar 

  • Bonventre, J. V., Roman, R. J., Lechene, C.: Effect of urea concentration of pelvic fluid on renal concentration ability. Am. J. Physiol. 239, F609-F618 (1980)

    Google Scholar 

  • Bulger, R. E., Beeuwkes III, R., Saubermann, A. J.: Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. III. Elemental content of cells in the rat renal papillary tip. J. Cell. Biol. 88, 274–280 (1981)

    Google Scholar 

  • Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report of the Carl-Cranz-Gesellschaft, 1971

  • Burg, M., Green, N.: Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224, 658–659 (1973)

    Google Scholar 

  • Burg, M., Helman, S., Grantham, J., Orloff, J.: Effect of vasopressin on the permeability of isolated rabbit cortical collecting tubules to urea, acetamide, and thiourea. In: Urea and the kidney (Schmidt-Nielsen B., Kerr, D. W. S., eds.), pp. 193–199. Amsterdam: Excerpta Medica 1970

    Google Scholar 

  • Capek, K., Fuda, G., Rumrich, G., Ullrich, K. J.: Harnstoffpermeabilität der corticalen Tubulusabschnitte von Ratten in Antidiurese und Wasserdiurese. Pflügers Arch. 290, 237–249 (1966)

    Google Scholar 

  • Chandhoke, P. S., Saidel, G. M.: Mathematical model of mass transport throughout the kidney: Effects of nephron heterogeneity and tubular-vascular organization. Ann. Biomed. Eng. 9, 263–301 (1981)

    Google Scholar 

  • Deuflhard, P.: A relaxation strategy for the modified Newton method. In: Optimization and Optimal Control (Bulirsch, R., Oettli, W., Stoer, J., eds.), pp. 59–73, Lecture Notes in Mathematics, Vol. 477. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Fehlberg, E.: Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweitenkontrolle. Computing 4, 93–106 (1969)

    Google Scholar 

  • Forrest, J. N., Jr., Stanier, M. W.: Kidney composition and renal concentration ability in young rabbits. J. Physiol. 187, 1–4 (1966)

    Google Scholar 

  • Foster, D. M., Jacquez, J. A.: Comparison using central core model of renal medulla of the rabbit and the rat. Am. J. Physiol. 234, F402-F414 (1978)

    Google Scholar 

  • Fourman, J., Moffat, D. B.: The blood vessels of the kidney. Oxford-Edinburgh: Blackwell Sci. Publ. 1971

    Google Scholar 

  • Frindt, G., Burg, M. W.: Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1, 224–231 (1972)

    Google Scholar 

  • Gertz, K. H., Schmidt-Nielsen, B., Pagel, H. D.: Exchange of water, urea and salt between the mammalian renal papilla and the surrounding urine (Abstract). Federation Proc. 25, 327 (1966)

    Google Scholar 

  • Gottschalk, C., Mylle, M.: Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196, 927–936 (1959)

    Google Scholar 

  • Gunther, R. A., Rabinowitz, L.: Urea and renal concentrating ability in the rabbit. Kidney Int. 17, 205–222 (1980)

    Google Scholar 

  • Hai, M. A., Thomas, S.: The time-course of changes in renal tissue composition during lysine vasopressin infusion in the rat. Pflügers Arch. 310, 297–319 (1969)

    Google Scholar 

  • Hilger, H. H., Klümper, J. D., Ullrich, K. J.: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. 267, 218–237 (1958)

    Google Scholar 

  • Horster, M., Zink, H.: Functional differentiation of the medullary collecting tubule: Influence of vasopressin. Kidney Int. 22, 360–365 (1982)

    Google Scholar 

  • Imai, M., Kokko, J. P.: Sodium chloride, urea and water transport in the thin ascending limb of Henle: Generation of osmotic gradients by passive diffusion of solutes. J. Clin. Invest. 53, 393–402 (1974)

    Google Scholar 

  • Jacquez, J. A., Foster, D., Daniels, E.: Solute concentration in the kidney — I. A model of the renal medulla and its limit cases. Math. Biosci. 32, 307–335 (1976)

    Google Scholar 

  • Jamison, R. L., Robertson, C. R.: Recent formulations of the urinary concentrating mechanism: A status report. Kidney Int. 16, 537–545 (1979)

    Google Scholar 

  • Johnston, P. A., Battilana, C. A., Lacy, F. B., Jamison, R. L.: Evidence for a concentration gradient favouring outward movement of sodium from the thin loop of Henle. J. Clin. Invest. 59, 234–240 (1977)

    Google Scholar 

  • Kainer, R.: A geometric model of the rat kidney. Anat. Embryol. 147, 91–109 (1975)

    Google Scholar 

  • Kaissling, B.: Ultrastructural characterization of the connecting tubule and the different segments of the collecting duct system in the rabbit kidney. In: Biochemical nephrology (Guder, W., Schmidt, U., eds.), pp. 99–119. Bern: Huber 1978

    Google Scholar 

  • Kaissling, B., Kriz, W.: Structural analysis of the rabbit kidney. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Klümper, J. D., Ullrich, K. J., Hilger, H. H.: Das Verhalten des Harnstoffs in den Sammelrohren der Säugetierniere. Pflügers Arch. 267, 238–243 (1958)

    Google Scholar 

  • Knepper, M. A., Danielson, R. A., Saidel, G. M., Post, R. S.: Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12, 313–323 (1977)

    Google Scholar 

  • Koepsell, H., Nicholson, W. A. P., Kriz, W., Höhling, H. J.: Measurements of exponential gradients of sodium and chloride in the rat kidney medulla using the electron microprobe. Pflügers Arch. 350, 167–184 (1974)

    Google Scholar 

  • Kokko, J. P.: Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49, 1838–1846 (1970)

    Google Scholar 

  • Kokko, J. P.: Urea transport in the proximal tubule and the descending limb of Henle. J. Clin. Invest. 51, 1999–2008 (1972)

    Google Scholar 

  • Kokko, J. P., Rector, F. C., Jr.: Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2, 214–233 (1972)

    Google Scholar 

  • Kriz, W.: Der architektonische and funktionelle Aufbau der Rattenniere. Z. Zellforsch. Mikrosk. Anat. 82, 495–535 (1967)

    Google Scholar 

  • Kriz, W.: Structural organization of the renal medulla: Comparative and functional aspects. Am. J. Physiol. 241, R3-R16 (1981)

    Google Scholar 

  • Kuhn, W., Ryffel, K.: Herstellung konzentrierter Lösungen aus verdünnten durch blo\e Membranwirkung. Ein Modellversuch zur Funktion der Niere. Hoppe-Seylers Z. Physiol. Chem. 276, 145–178 (1942)

    Google Scholar 

  • Lassiter, W. E., Frick, A., Rumrich, G., Ullrich, K. J.: Influence of ionic calcium on the water permeability of proximal and distal tubules in the rat kidney. Pflügers Arch. 285, 90–95 (1965)

    Google Scholar 

  • Laurence, R., Marsh, D. J.: Effect of diuretic states on hamster collecting duct electrical potential differences. Am. J. Physiol. 220, 1610–1616 (1971)

    Google Scholar 

  • Lory, P.: Numerical solution of a kidney model by multiple shooting. Math. Biosci. 50, 117–128 (1980)

    Google Scholar 

  • Lory, P., Gilg, A., and Horster, M.: Computation of renal osmotic work in a “passive” central core model incorporating medullary geometry and pelvic urea reflux (Abstract). Pflügers Arch. 391, R27 (1981)

    Google Scholar 

  • Marsh, D. J.: Solute and water flows in thin limbs of Henle's loop in the hamster kidney. Am. J. Physiol. 218, 824–831 (1970)

    Google Scholar 

  • Marsh, D. J., Martin, C. M.: Lack of water or urea movement from pelvic urine to papilla in hydropenic hamsters. Mineral Electrolyte Metab. 3, 81–86 (1980)

    Google Scholar 

  • Marsh, D. J., Kelman, R. B., Howard, H. C.: The theory of urine formation in water diuresis with implications for antidiuresis. Bull. Math. Biophys. 29, 67–89 (1967)

    Google Scholar 

  • Mejia, R., Stephenson, J. L.: Numerical solution of multinephron kidney equations. J. Comp. Phys. 32, 235–244 (1979)

    Google Scholar 

  • Moore, L. C., Marsh, D. J.: How descending limb of Henle's loop permeability affects hypertonic urine formation. Am. J. Physiol. 239, F57-F71 (1980)

    Google Scholar 

  • Oberle, H. J.: Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell. Habilitationsschrift. Technische Universität, München, 1982

    Google Scholar 

  • Oliver, J.: Nephrons and kidneys. New York: Hoeber Medical Division 1968

    Google Scholar 

  • Oliver, R. E., Roy, D. R., Jamison, R. L.: Urinary concentration in the papillary collecting duct of the rat. Role of the ureter. J. Clin. Invest. 69, 157–164 (1982)

    Google Scholar 

  • Pennell, J. P., Sanjana, V., Frey, N. R., Jamison, R. L.: The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J. Clin. Invest. 55, 399–409 (1975)

    Google Scholar 

  • Rocha, A., Kokko, J. P.: Sodium chloride and water transport in the medullary thick ascending limb of Henle. J. Clin. Invest. 52, 612–623 (1973)

    Google Scholar 

  • Rocha, A. S., Kokko, J. P.: Permeability of medullary nephron segments to urea and water: Effect of vasopressin. Kidney Int. 6, 379–387 (1974)

    Google Scholar 

  • Roch-Ramel, F., Filloux, B., Guignard, J. P., Peters, G.: Fate of urea in Henle's loops of the rabbit and the rat. In.: New aspects of renal function (Vogel, H. G., Ullrich, K. J., eds.), pp. 118–121. Amsterdam: Excerpta Medica 1978

    Google Scholar 

  • Schafer, J. A., Andreoli, T. E.: The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51, 1279–1286 (1972)

    Google Scholar 

  • Schmidt-Nielsen, B., Pagel, H. D.: Mechanism of urea retention in the renal medulla. In: Urea and the kidney (Schmidt-Nielsen, B., Kerr, D. W. S., eds.), pp. 393–400. Amsterdam: Excerpta Medica 1970

    Google Scholar 

  • Schmidt-Nielsen, B., Churchill, M., Reinking, L. N.: Occurrence of renal pelvic refluxes during rising urine flow rate in rats and hamsters. Kidney Int. 18, 419–431 (1980)

    Google Scholar 

  • Schütz, W., Schnermann, J.: Pelvic urine composition as a determinant of inner medullary solute concentration and urine osmolarity. Pflügers Arch. 334, 154–166 (1972)

    Google Scholar 

  • Sperber, I.: Studies on the mammalian kidney. Zool. Bidr. Uppsala 22, 249–431 (1944)

    Google Scholar 

  • Stephenson, J. L.: Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2, 85–94 (1972)

    Google Scholar 

  • Stephenson, J. L.: The mathematical theory of renal function. In: Engineering Principles in Physiology (Brown, J. H. U., Gann, D. S., eds.), vol. 2, pp. 283–320. New York, London: Academic Press 1973

    Google Scholar 

  • Stephenson, J. L., Tewarson, R. P., Mejia, R.: Quantitative analysis of mass and energy balance in non-ideal models of the renal counterflow system. Proc. Nat. Acad. Sci. USA 71, 1618–1622 (1974)

    Google Scholar 

  • Stephenson, J. L., Mejia, R., Tewarson, R. P.: Model of solute and water movement in the kidney. Proc. Nat. Acad. Sci. USA 73, 252–256 (1976)

    Google Scholar 

  • Stoer, J., Bulirsch, R.: Introduction to numerical analysis. New York: Springer 1980

    Google Scholar 

  • Ullrich, K. J., Hilger, H. H., Klümper, J. D.: Sekretion von Ammoniumionen in den Sammelrohren der Säugetierniere. Pflügers Arch. 267, 244–250 (1958)

    Google Scholar 

  • Ullrich, K. J., Rumrich, G., Baldamus, C. A.: Mode of urea transport across the mammalian nephron. In: Urea and the kidney (Schmidt-Nielsen, B., Kerr, D. W. S., eds.), pp. 175–185. Amsterdam: Excerpta Medica 1970

    Google Scholar 

  • Ullrich, K. J., Rumrich, G., Fuchs, G.: Wasserpermeabilität und transtubulärer Wasserfluß cortikaler Nephronabschnitte bei verschiedenen Diuresezuständen. Pflügers Arch. 280, 99–119 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A portion of this study has been presented at the Oberwolfach Conference on Mathematical Biology, November 1981

Part of the work was carried out while one of the authors (P. L.) was visiting at the State University of New York at Stony Brook. It was supported by the Science Committee of NATO via the DAAD

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lory, P., Gilg, A. & Horster, M. Renal countercurrent system: Role of collecting duct convergence and pelvic urea predicted from a mathematical model. J. Math. Biology 16, 281–304 (1983). https://doi.org/10.1007/BF00276508

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276508

Key words

Navigation