Skip to main content
Log in

Permanence of some ecological systems with several predator and one prey species

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The stability criterion used in the following is “permanence”. Permanence means that all trajectories starting in the interior are ultimately bounded away from the boundary and that this bound is independent of the initial values. Hence sufficiently small fluctuations cannot lead to extinction of any species. In the following we deal with one-prey, two-predator resp. one-prey, three-predator systems and a one-prey, two-predator, one-top-predator system with three trophic levels. It turns out that the characterization of permanence for such models described by Lotka-Volterra dynamics is rather simple and elegant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, E., Hofbauer, J.: Permanence in Lotka-Volterra equations. In: Lotka-Volterra Approach in Dynamic Systems, Proceedings Conference Wartburg, DDR, 1984

  2. Arneodo, A., Coullet, P., Peyraud, J., Tresser, C.: Strange attractors in Volterra equations for species in competition. J. Math. Biol. 14, 153–157 (1982)

    Google Scholar 

  3. Bazykin, A. D.: Mathematical biophysics of interacting populations (in Russian). Moscow: Nauka 1985

    Google Scholar 

  4. Butler, G., Freedman, H. I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Google Scholar 

  5. Coste, J., Peyraud, J., Coullet, P.: Asymptotic behaviours in the dynamics of competing species. SIAM J. Appl. Math. 36, 516–543 (1979)

    Google Scholar 

  6. Dowker, Y. N., Friedlander, F. G.: On limit sets in dynamical systems. Proc. Lond. Math. Soc. 4, 168–176 (1954)

    Google Scholar 

  7. Franke, J. E., Selgrade, J. F.: Abstract ω-limit sets, chain recurrent sets, and basic sets for flows. Proc. Am. Math. Soc. 60, 309–316 (1976)

    Google Scholar 

  8. Freedman, H. I., Waltman, P.: Mathematical analysis of some three-species food chain models. Math. Biosci. 33, 257–276 (1977)

    Google Scholar 

  9. Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)

    Google Scholar 

  10. Freedman, H. I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73, 89–101 (1985)

    Google Scholar 

  11. Gantmacher, F. R.: Matrizenrechnung II, Spezielle Fragen und Anwendungen. Berlin: VEB Deutscher Verlag der Wissenschaften, 1971

    Google Scholar 

  12. Gard, T. C., Hallam, T. G., Svoboda, L. J.: Persistence and extinction in three species Lotka-Volterra competitive systems. Math. Biosci. 46, 117–124 (1979)

    Google Scholar 

  13. Gard, T. C., Hallam, T. G.: Persistence in food webs I: Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    Google Scholar 

  14. Gard, T. C.: Persistence in food chains with general interactions. Math. Biosci. 51, 165–174 (1980)

    Google Scholar 

  15. Gilpin, M. E.: Spiral chaos in a predator-prey model. Am. Nat. 113, 306–308 (1979)

    Google Scholar 

  16. Haigh, J., Maynard Smith, J.: Can there be more predators than prey? Theor. Popul. Biol. 3, 290–299 (1972)

    Google Scholar 

  17. Harrison, G. W.: Global stability of food chains. Am. Nat. 114, 455–457 (1979)

    Google Scholar 

  18. Hofbauer, J.: A general cooperation theorem for hypercycles. Monatsh. Math. 91, 233–240 (1981)

    Google Scholar 

  19. Hofbauer, J.: On the occurrence of limit cycles in the Volterra-Lotka equation. Nonlinear Anal., Theory Methods Appl. 5, 1003–1007 (1981)

    Google Scholar 

  20. Hofbauer, J.: Saturated equilibria, permanence, and stability for ecological systems. To appear in: Proceedings on the Second Autumn Course on Mathematical Ecology, Trieste, 1986

  21. Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference equations of Lotka-Volterra type. J. Math. Biol. 25, 553–570 (1987)

    Google Scholar 

  22. Hofbauer, J., Sigmund, K.: Permanence for replicator equations. Math. of Dynamic Proc., Proc. Conf. Sopron 1985. Lect. Notes Econ. Math., vol. 287. Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  23. Hofbauer, J., Sigmund, K.: Dynamical systems and theory of evolution. Cambridge: University Press 1988

    Google Scholar 

  24. Hsu, S. B., Hubbell, S. P.: Two predators competing for two prey species: An analysis of MacArthur's model. Math. Biosci. 47, 143–171 (1979)

    Google Scholar 

  25. Hutson, V., Vickers, G. T.: A criterion for permanent coexistence of species, with an application to a two-prey, one-predator system. Math. Biosci. 63, 253–269 (1983)

    Google Scholar 

  26. Jansen, W.: A permanence theorem on replicator systems. J. Math. Biol. 25, 411–422 (1987)

    Google Scholar 

  27. Kirlinger, G.: Permanence in Lotka-Volterra equations. Linked prey-predator systems. Math. Biosci. 82, 165–191 (1986)

    Google Scholar 

  28. Koch, A.: Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. J. Theor. Biol. 44, 387–395 (1974)

    Google Scholar 

  29. Kostizin, V. A.: Biologie mathématique (in French). Collection Armand Colin, Paris, 1937

    Google Scholar 

  30. McGehee, R., Armstrong, R. A.: Some mathematical problems concerning the ecological principle of competitive exclusion. J. Differ. Equations 23, 30–52 (1977)

    Google Scholar 

  31. May, R. M., Leonard, W. J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975).

    Google Scholar 

  32. Rescigno, A.: The struggle for life-IV. Two predators sharing a prey. Bull. Math. Biol. 39, 179–185 (1977)

    Google Scholar 

  33. Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organisation III, cooperative and competitive behaviour of hypercycles. J. Differ. Equations 32, 357–368 (1979)

    Google Scholar 

  34. Sigmund, K., Schuster, P.: Permanence and uninvadability for deterministic population models. In: Stochastic Phenomena and chaotic behaviour in complex systems. Synergetics 21, Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  35. So, J. W. H.: A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain. J. Theor. Biol. 80, 185–187 (1979)

    Google Scholar 

  36. Svirezhev, Yu. M., Logofet, D. O.: Stability of biological communities, pp. 302. Moscow: Mir Publishers 1983

    Google Scholar 

  37. Svirezhev, Yu. M., Logofet, D. O.: Complicated dynamics in simple models of ecological systems. In: Lotka-Volterra Approach in Dynamic Systems, Proceedings Conference Wartburg, DDR, 1984

  38. Svirezhev, Yu. M.: Modern problems of mathematic ecology. Proceedings of the International Congress of Mathematics, Warsaw, 1983

  39. Takeuchi, Y., Adachi, N.: Existence and bifurcation of stable equilibrium in two-prey, one-predator communities. Bull. Math. Biol. 45, 877–900 (1983)

    Google Scholar 

  40. Takeuchi, Y., Adachi, N.: Oscillations in prey-predator Volterra models. In: Freedman, H. I., Strobeck, C. (eds.) Population biology. Lect. Notes Biomath., vol. 52, pp. 320–326. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  41. Vance, R. R.: Predation and resource partitioning in one predator-two prey model communities Am. Nat. 112, 797–813 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirlinger, G. Permanence of some ecological systems with several predator and one prey species. J. Math. Biology 26, 217–232 (1988). https://doi.org/10.1007/BF00277734

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277734

Key words

Navigation