Skip to main content
Log in

Chemical reaction dynamics

Part I: Geometrical structure

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A mathematical theory of chemical reaction systems is proposed. Generic equations of motion are developed which separate equilibrium, nonequilibrium and stoichiometric aspects. The role of various constitutive assumptions is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., Foundations of Mechanics. New York: Benjamin 1967.

    Google Scholar 

  • Aris, R., The algebra of systems of second-order reactions. Indust. Engng. Chem. Fundamentals 3, 28–37 (1964).

    Google Scholar 

  • Aris, R., Prolegomena to the rational analysis of systems of chemical reactions. Arch. Rational Mech. Anal. 19, 81–99 (1965).

    Google Scholar 

  • Aris, R., Prolegomena to the rational analysis of systems of chemical reactions. II. Someaddenda. Arch. Rational Mech. Anal. 27, 356–364 (1968).

    Google Scholar 

  • Aris, R., A note on the structure of the transient behaviour of chemical reactors. Chem. Engng. J. 2, 140–141 (1971)

    Google Scholar 

  • Auslander, D. M., G. F. Oster, A. Perelson & G. Clifford, On systems with coupled chemical reaction and diffusion. J. Dynamic Systems, Measurement, and Control, Trans. ASME, Series G, 94, 239–248 (1972)

    Google Scholar 

  • Biot, M. A., Variational principles in irreversible thermodynamics with applications to viscoelasticity. Phys. Rev. 97, 1463–1469 (1955).

    Google Scholar 

  • Bishop, R. L., & S. I. Goldberg, Tensor Analysis on Manifolds. New York: Macmillan 1968.

    Google Scholar 

  • Blum, E. H., & R. Luss, Thermodynamic consistency of reaction rate expressions. Chem. Engng. Sci. 14, 322–323 (1964).

    Google Scholar 

  • Bowen, R. M., On the stoichiometry of chemically reacting materials. Arch. Rational Mech. Anal. 29, 114–124 (1968a).

    Google Scholar 

  • Bowen, R. M., Thermochemistry of reacting materials. J. Phys. Chem. 49, 1625–1637 (1968b).

    Google Scholar 

  • Brayton, R. K., & J. K. Moser, A theory of nonlinear networks. Quart. Appl. Math 22, 1–33; 81–104 (1964).

    Google Scholar 

  • Brayton, R. K., Nonlinear reciprocal networks. In Mathematical Aspects of Electrical Network Analysis Vol. III, pp. 1–15. SIAM-AMS Proceedings. Providence, R. I.: American Mathematical Society 1971.

    Google Scholar 

  • Brickell F.,& R.S. Clark, Differentiable Manifolds. New York: Van Nostrand Reinhold 1970.

    Google Scholar 

  • Callen, H., Thermodynamics. New York: Wiley 1960.

    Google Scholar 

  • Coleman, B. D., & M. E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 49, 1625–1637 (1967).

    Google Scholar 

  • De Donder, Th., & P. Van Rysselberghe, Affinity. Stanford, California: Stanford University Press 1936.

    Google Scholar 

  • de Groot, S. R., Thermodynamics of Irreversible Processes. Amsterdam: North-Holland 1951.

    Google Scholar 

  • Denbigh, K., The Principles of Chemical Equilibrium. 3rd ed. London: Cambridge University Press 1971.

    Google Scholar 

  • Desoer, C., & G. Oster, Globally reciprocal stationary systems. Int. J. Engng. Sci. 11, 141–155 (1973).

    Google Scholar 

  • Dieudonné, J., Treatise on Analysis, Vol. III. New York: Academic Press 1972.

    Google Scholar 

  • Dunwoody, J., Equilibrium of homogeneous chemical reactions in ideal systems. J. Math. Anal. Applic. 28, 493–499 (1969).

    Google Scholar 

  • Feinberg, M., On chemical kinetics of a certain class. Arch. Rational Mech. Anal. 46, 1–41 (1972a).

    Google Scholar 

  • Feinberg, M., Complex balancing in general kinetic systems. Arch. Rational Mech. Anal. 49, 187–194 (1972b).

    Google Scholar 

  • Flanders, H., Differential Forms with Applications to the Physical Sciences. New York: Academic Press 1963.

    Google Scholar 

  • Frazier, G. C., & R. E. Ulanowicz, Film transfer with nonequilibrium chemical reaction. Chem. Engng. Sci. 25, 549–557 (1970).

    Google Scholar 

  • Heineken, F. G., H. M. Tuschiya, & R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosciences 1, 95–113 (1967).

    Google Scholar 

  • Hermann, R., Geometry, Physics and Systems. New York: Marcel Dekker 1973

    Google Scholar 

  • Horn, F., & R. Jackson, General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116 (1972).

    Google Scholar 

  • Horn, F., Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Rational Mech. Anal. 49, 172–186 (1972).

    Google Scholar 

  • Kerner, E. H., Dynamical aspects of kinetics. Bull. Math. Biophys. 26, 333–349 (1964).

    Google Scholar 

  • Kerner, E. H., A dynamical approach to chemical kinetics: mass-action laws as generalized Riccati equations. Bull. Math. Biophys. 34, 243–275 (1972).

    Google Scholar 

  • Krambeck, F. J., The mathematical structure of chemical kinetics in homogeneous single-phase systems. Arch. Rational Mech. Anal. 38, 317–347 (1970).

    Google Scholar 

  • Kuh, E. S., & I. N. Hajj, Nonlinear circuit theory: resistive networks. Proc. I.E.E.E. 59, 340–355 (1971).

    Google Scholar 

  • La Mer, V. K., O. Foss, & H. Reiss, Some new procedures in the thermodynamic theory inspired by the recent work of J. N. Brønsted. Ann. N. Y. Acad. Sci. 51, 605–626 (1949).

    Google Scholar 

  • Lang, S., Analysis II. Reading, Mass: Addison-Wesely 1969.

    Google Scholar 

  • Lang, S., Differentiable Manifolds. Reading, Mass: Addison-Wesley 1972.

    Google Scholar 

  • Lewis, G. N., A new principle of equilibrium. Proc. Nat'l. Acad. Sci. (USA) 11, 179–183 (1925).

    Google Scholar 

  • Loomis, L. H., & S. Sternberg, Advanced Calculus. Reading, Mass.: Addison-Wesley 1968.

    Google Scholar 

  • MacFarlane, A. G., Dynamical System Models. London: Harrap 1970.

    Google Scholar 

  • MacLane, S., Geometrical Mechanics. (Lecture Notes) Department of Mathematics, Univ. of Chicago 1968.

  • Meixner, J., On the theory of linear passive systems. Arch. Rational Mech. Anal. 17, 278–298 (1964).

    Google Scholar 

  • Millar, W., Some general theorems for nonlinear systems possessing resistance. Phil. Mag. 42, 1150–1160 (1951).

    Google Scholar 

  • Onsager, L., Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    Google Scholar 

  • Onsager, L., & S. Machlup, Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1515 (1953).

    Google Scholar 

  • Ortega, J. M., & W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.

    Google Scholar 

  • Oster, G., A. Perelson, & A. Katchalsky, Network thermodynamics. Nature 234, 393–399 (1971).

    Google Scholar 

  • Oster, G., & A. Perelson, Systems, circuits and thermodynamics. Israel J. Chem., Katchalsky Memorial Issue 11, 445–478 (1973).

    Google Scholar 

  • Oster, G., A. Perelson & A. Katchalsky, Network thermodynamics: dynamic modelling of biophysical systems. Quart. Rev. Biophys. 6, 1–134 (1973).

    Google Scholar 

  • Pings, C. J., & E. B. Nebeker, Thermodynamics of chemical coupling. Indust. Engng. Chem. Fundamentals 4, 376–381 (1965).

    Google Scholar 

  • Pratt, G., Gas Kinetics. New York: Wiley 1969.

    Google Scholar 

  • Prigogine, I., Etude Thermodynamique des Phénomènes Irreversibles. Liege: Desoer 1947.

    Google Scholar 

  • Prigogine, I, & R. Defay, Chemical Thermodynamics. London: Longmans Green 1954.

    Google Scholar 

  • Prigogine, I, Thermodynamics of Irreversible Processes, 3rd ed. New York: Wiley-Interscience 1967.

    Google Scholar 

  • Roels, J., & A. Weinstein, Functions whose Poisson brackets are constant. J. Math. Phys. 12, 1482–1486 (1971).

    Google Scholar 

  • Rosenbrock, H. H., The approach to a stable steady state far from equilibrium. Proc. Phys. Soc. 80, 962–970 (1962).

    Google Scholar 

  • Shapiro, N. Z., & L. S. Shapley, Mass action laws and the Gibbs free energy function. J. Soc. Indust. Appl. Math. 13, 353–375 (1965).

    Google Scholar 

  • Shear, D. B., Stability and uniqueness of the equilibrium point in chemical reaction systems. J. Chem. Phys. 49, 4144–4147 (1968).

    Google Scholar 

  • Truesdell, C., Rational Thermodynamics. A Course of Lectures on Selected Topics. New York: McGraw-Hill 1969.

    Google Scholar 

  • Van Rysselberghe, P., Reaction rates and affinities. J. Chem. Phys. 29, 640–642 (1958).

    Google Scholar 

  • Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups. Glenview, Illinois: Scott Foresman 1971.

    Google Scholar 

  • Wei, J., An axiomatic treatment of chemical reaction systems. J. Chem. Phys. 36, 1578–1584 (1962).

    Google Scholar 

  • Wei, J., & C. D. Prater, The structure and analysis of complex reaction systems. Advan. Catalysis 13, 203–392 (1962).

    Google Scholar 

  • Wei, J., The structure of complex chemical reaction systems. Indust. Engng. Chem. Fundamentals 4, 161–167 (1965).

    Google Scholar 

  • Willems, J. C., Dissipative dynamical systems. Part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972).

    Google Scholar 

  • Zadeh, L., & C. A. Desoer, Linear System Theory. New York: McGraw-Hill 1963.

    Google Scholar 

  • Zeeman, E. C., Differential equations for the heartbeat and nerve impulse. In Towards a Theoretical Biology, vol. 4, pp. 8–67, C. H. Waddington, ed. Edinburgh: Edinburgh University Press 1973.

    Google Scholar 

  • Zelman, A. D., J. C. T. Kwak, J. Leibovitz, & K. S. Spiegler, Concentration clamp method for transport measurements in membranes. In Biological Aspects of Electrochemistry, G. Milazzo, ed. Basel, Switzerland: Birkhäuser 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Aris

The work reported here was performed under the auspices of the U.S. Atomic Energy Commission.

This research was supported in part by National Institutes of Health Postdoctoral Research Fellowship 1 FO2 GM 54361-01 (A.S.P.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oster, G.F., Perelson, A.S. Chemical reaction dynamics. Arch. Rational Mech. Anal. 55, 230–274 (1974). https://doi.org/10.1007/BF00281751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281751

Keywords

Navigation