Skip to main content
Log in

Replication bypass model of sister chromatid exchanges and implications for Bloom's Syndrome and Fanconi's anemia

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A model of the sister chromatid exchange (SCE) process is outlined as a replication mechanism to bypass DNA crosslinks. The model suggests that when normal bidirectional replication advances from both sides towards a crosslink along the two opposite parental strands, the complementary parental strand segments can be temporarily displaced at each contralateral 5′ side from the crosslink. The free ends produced in this first step will be terminally aligned but will have opposite polarity. The second step of the bypass can, however, be completed by either of two rejoining processes—terminal ligation of the free ends via nascent Okazaki pieces or aberrant complementation by overlapping the free ends. This bypass mechanism (1) allows replication to continue past a crosslink leaving it intact but (2) results in the switching of parental strands and their attached incomplete nascent strands above and below the crosslink site producing an exchange between sister chromatids. This model is compatible with the findings of current SCE studies using the new BUDR/stain techniques as well as with previous autoradiographic studies. It also suggests that the chromatid breaks and deletions in Fanconi's Anemia represent a defect in step two of the replication bypass mechanism and that the high frequency of SCE's and quadriradials in Bloom's Syndrome represent the SCE overload effects of a defect in crosslink repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. W., Latt, S. A.: Analysis of sister chromatid exchange formation in vivo in mouse spermatogonia as a new test system for environmental mutagens. Nature 260, 449–451 (1976)

    PubMed  Google Scholar 

  • Angell, R. R., Jacobs, P. A.: Lateral asymmetry in human constitutive heterochromatin. Chromosoma (Berl.) 51, 301–310 (1975)

    Google Scholar 

  • Bender, M. A., Griggs, H. G., Bedford, J. S.: Recombinational DNA repair and sister chromatid exchanges. Mutat. Res. 24, 117–123 (1974)

    PubMed  Google Scholar 

  • Chaganti, R. S. K., Schonberg, S., German, J.: A manyfold increase in sister chromatid exchanges in Bloom's Syndrome lymphocytes. Proc. Nat. Acad. Sci. USA 71, 4508–4512 (1974)

    PubMed  Google Scholar 

  • Cleaver, J. E., Thomas, G. H.: Single strand interruptions in DNA and the effects of caffeine in Chinese Hamster cells irradiated with ultraviolet light. Biochem. biophys. Res. Commun. 36, 203–208 (1969)

    PubMed  Google Scholar 

  • Cole, R. S.: Repair of DNA containing interstrand crosslinks in Escherichia coli: Sequential excision and recombination. Proc. Nat. Acad. Sci. USA 70, 1064–1068 (1973)

    PubMed  Google Scholar 

  • Cole, R. S.: Psoralen crosslinks in DNA: Formation consequences and repair. In: Progress in photobiology, G. O. Schenck, ed., p. 019a-021. Frankfurt: Deutsche Gesellschaft für Lichtforschung 1974

    Google Scholar 

  • Cole, R. S., Levitan, D., Sinden, R. R.: Removal of psoralen interstrand cross-links from DNA of escherichia coli: Mechanism and genetic control. J. Mol. Biol. 102, 000–021 (in press), 1977)

    Google Scholar 

  • Comings, D. E.: Implications of somatic recombination and sister chromatid exchange in Bloom's Syndrome and cells treated with mitomycin C. Humangenetik 28, 191–196 (1975)

    PubMed  Google Scholar 

  • Dutrillaux, B., Fosse, A. M., Prieur, M., Lejeune, J.: Chromatid exchanges in human mitotic cells. BUdR treatment and biochromatic fluorescence by acridine orange. Chromosoma (Berl.) 48, 327–340 (1974)

    Google Scholar 

  • Gatti, M., Pimpinelli, S., Ollivieri, G.: The frequency and distribution of isolabeling in Chinese Hamster chromosomes after exposure to X-rays. Mutat. Res. 23, 229–238 (1974)

    PubMed  Google Scholar 

  • German, J., LaRock, J.: Chromosomal effects of mitomycin, a potential recombinogen in mammalian cell genetics. Tex. Rep. Biol. Med. 27, 409–418 (1969)

    PubMed  Google Scholar 

  • German, J., Archibald, R., Bloom, D.: Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148, 506–507 (1965)

    PubMed  Google Scholar 

  • German, J., Crippa, L. P., Bloom, D.: Bloom's Syndrome III: Analysis of the chromosome aberration characteristic of this disorder. Chromosoma (Berl.) 48, 361–366 (1974)

    Article  Google Scholar 

  • Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964)

    Google Scholar 

  • Howard-Flanders, P.: DNA repair and recombination. Br. Med. Bull. 29, 226–235 (1973)

    PubMed  Google Scholar 

  • Howard-Flanders, P., Cole, R. S., Ma, P. F.: Excision and recombination in the repair of DNA in bacteria treated with ultraviolet light or cross-linking agents. Studia Biophysica 36, 211–220 (1973)

    Google Scholar 

  • Kato, H.: Induction of sister chromatid exchanges by UV light and its inhibition by caffeine. Exp. Cell Res. 82, 383–390 (1973)

    PubMed  Google Scholar 

  • Kato, H.: Induction of sister chromatid exchanges by chemical mutagens and its possible relevance to DNA repair. Exp. Cell Res. 85, 239–247 (1974a)

    PubMed  Google Scholar 

  • Kato, H.: Is isolabeling a false image? Exp. Cell Res. 89, 416–420 (1974b)

    PubMed  Google Scholar 

  • Kato, H.: Possible role of DNA synthesis in formation of sister chromatid exchanges. Nature 252, 739–741 (1974c)

    PubMed  Google Scholar 

  • Kato, H., Shimada, H.: Sister chromatid exchanges induced by mitomycin C: a new method of detecting DNA damage at chromosomal level. Mutat. Res. 28, 459–464 (1975)

    PubMed  Google Scholar 

  • Kato, H., Stich, H. F.: Sister chromatid exchanges in ageing and repair-deficient human fibroblasts. Nature 260, 447–448 (1976)

    PubMed  Google Scholar 

  • Kato, H.: Mechanisms for siter chromatid exchanges and their relation to the production of chromosome aberrations. Chromosoma (Berl.) 59, 179–191 (1977)

    Article  Google Scholar 

  • Kihlman, B. A.: Sister chromatid exchanges in Vicia faba. II. Effects of thiotepa, caffeine and 8-ethoxycaffeine on the frequency of SCE's. Chromosoma (Berl.) 51, 11–18 (1975)

    Article  Google Scholar 

  • Korenberg, J. R., Freedlender, E. F.: Giemsa technique for the detection of sister chromatid exchanges. Chromosoma (Berl.) 48, 355–360 (1974)

    Article  Google Scholar 

  • Latt, S. A.: Localization of sister chromatid exchanges in human chromosomes. Science 185, 74–76 (1974a)

    PubMed  Google Scholar 

  • Latt, S. A.: Sister chromatid exchanges, indices of human chromosome damage and repair: Detection by fluorescence and induction of mitomycin C. Proc. Nat. Acad. Sci. USA 71, 3162–3166 (1974)

    PubMed  Google Scholar 

  • Latt, S. A., Stetten, G., Juergens, L. A., Buchanan, G. R., Gerald, P. S.: Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia. Proc. Nat. Acad. Sci. USA 72, 4066–4070 (1975)

    PubMed  Google Scholar 

  • Lin, M. S., Davidson, R. L.: Centric fusion, satellite DNA, and DNA polarity in mouse chromosomes. Science 185, 1179–1181 (1974)

    PubMed  Google Scholar 

  • Meselson, M. S., Radding, C. M.: A general model for genetic recombination. Proc. Nat. Acad. Sci. USA 72, 358–361 (1975)

    PubMed  Google Scholar 

  • Parrish, J. A., Fitzpatrick, T., Tanenbaum, L., Pathak, M. A.: Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N. Engl. J. Med. 291, 1207–1211 (1974)

    PubMed  Google Scholar 

  • Perry, P., Evans, H. J.: Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258, 121–125 (1975)

    PubMed  Google Scholar 

  • Perry, P., Wolff, S.: New Giemsa method for differential staining of sister chromatids. Nature 251, 156–158 (1974)

    PubMed  Google Scholar 

  • Rommelaere, J., Miller-Faurès, A.: Detection by density equilibrium centrifugation of recombinant-like DNA molecules in somatic mammalian cells. J. Mol. Biol. 98, 195–218 (1975)

    PubMed  Google Scholar 

  • Sasaki, M. S., Tonomura, A.: A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 33, 1829–1836 (1973)

    PubMed  Google Scholar 

  • Schroeder, T. M.: Sister chromatid exchange- and chromatid interchanges in Blooms' syndrome. Humangenetik 30, 317–323 (1975)

    PubMed  Google Scholar 

  • Sehgal, V. N.: A comparative clinical evaluation of trimethylpsoralen, psoralen and 8-methoxypsoralen in treating vitiligo. Int. J. Dermatol. 14, 205–208 (1975)

    PubMed  Google Scholar 

  • Shafer, D. A., Tadayon, F., Hollingsworth, F., Falek, A.: Giemsa staining of DNA replication patterns and simultaneous localization of sister chromatid exchanges. Am. J. Hum. Genet. 27, 80A (1975)

  • Shafer, D. A., Hollingsworth, F., Tadayon, F., Falek, A.: Giemsa replication (GR) banding of metaphase chromosomes. Mam. Chrom. Newsltr. 17, 62 (1976)

    Google Scholar 

  • Shafer, D. A., Tadayon, F. B., Falek, A.: Sister chromatid exchange induction with psoralen plus blacklight. Mam. Chrom. Newsltr. 18, 49 (1977)

    Google Scholar 

  • Smyth, D. R., Evans, H. J.: Mapping of sister-chromatid exchanges in human chromosomes using G-banding and autoradiography. Mutat. Res. 35, 139–154 (1976)

    PubMed  Google Scholar 

  • Strauss, B. S.: Nuclear DNA. In: The cell nucleus, H. Busch, ed., Vol. III, pp. 3–33. New York: Academic Press 1974

    Google Scholar 

  • Taylor, J. H.: Sister chromatid exchanges in tritium-labeled chromosomes. Genetics 43, 515–529 (1958)

    Google Scholar 

  • Tice, R., Chailet, J., Schneider, E. L.: Evidence derived from sister chromatid exchanges of restricted rejoining of chromatid subunits. Nature 256, 642–644 (1975)

    PubMed  Google Scholar 

  • Vogel, W., Bauknecht, T.: Differential chromatid staining by in vivo treatment as a mutagenicity test system. Nature 260, 448–449 (1976)

    PubMed  Google Scholar 

  • Walter, J. F., Voorhees, J. J.: Psoriasis improved by psoralen plus blacklight. Acta Derm. Venereol. 53, 469–472 (1973)

    PubMed  Google Scholar 

  • Whitehouse, H. L. K.: A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature (Lond.) 199, 1034–1040 (1963)

    Google Scholar 

  • Wolff, S., Perry, P.: Insights on chromosome structure from sister chromatid exchange ratios and the lack of both isolabeling and heterolabeling as determined by the FPG technique. Exp. Cell Res. 93, 23–30 (1975)

    PubMed  Google Scholar 

  • Wolff, S., Perry, P.: Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma (Berl.) 48, 341–353 (1974)

    Article  Google Scholar 

  • Wolff, S., Bodycote, J., Painter, R. B.: Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: The necessity for cells to pass through S. Mutat. Res. 25, 73–81 (1974)

    PubMed  Google Scholar 

  • Wolff, S., Bodycote, J., Thomas, G. H., Cleaver, J. E.: Sister chromatid exchange in Xeroderma Pigmentosum cells that are defective in DNA excision repair or post-replication repair. Genetics 81, 349–355 (1975)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafer, D.A. Replication bypass model of sister chromatid exchanges and implications for Bloom's Syndrome and Fanconi's anemia. Hum Genet 39, 177–190 (1977). https://doi.org/10.1007/BF00287010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00287010

Keywords

Navigation