Skip to main content
Log in

The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: A statistical approach

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A statistical evaluation of 5 338 analysis of freshwaters from little polluted stream basins in the Czech Republic indicated a relationship between the Pb, Cu, Zn, Cd, Be, As, Mn, Sr, F and Fe concentrations and the pH, over a range of pH 3.6 to 9.6. Except for Sr, the median concentrations of all the trace metals increase with decreasing pH, but the increase never extends over the whole studied acidic range (pH 3.6 to 7.0). Acid deposition related mobilization of Mn and Be into freshwaters explains the sharp increase in their concentrations with decreasing pH. Cadmium and Zn are also mobilized n strongly acidic environment. The concentrations of Be, As, F and Mn in strongly acidic waters and those of Zn and Cd in weakly acidic ones are considerably higher in areas receiving a higher atmospheric loading. For Be and Mn, the higher concentrations are caused by higher acid deposition rates, while for As and F, the concentrations are probably greater due to higher atmospheric deposition of these elements over more intensely acontaminated areas of the Czech Republic.

In extremely acidic waters (pH < 4.2), the concentrations of Mn, Be, Cd, Zn and Al no longer increase with decreasing pH; on the contrary, those of Mn and Be actually decrease. This seems to be primarily caused by a decrease in their concentrations within the surface horizons of soils and vegetation induced by prolonged leaching. The Cd and Zn concentrations are independent of pH over an interval of pH 5.4 to 6.0 and thus the increase in the mean concentrations of Cd and Zn with decreasing pH involves two separate stages, at pH > 6.0 and at pH < 5.4.

The concentrations of Cu in acid freshwaters are controlled by both the presence of high molecular weight organics plus biota uptake and by their atmospheric deposition levels; the concentrations of As and Pb are in addition controlled by sorption on Fe - oxyhydroxides. These elements accumulate in the topsoil, even under conditions of severe acidification. The surprisingly lower concentrations of Pb and Cu were found in acidic waters of more contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergkvist, B.: 1987, Water, Air Soil Pollut. 33, 131.

    Google Scholar 

  • Bezačínský, M., Pilátová, B., Jiřele, V. and Bencko, V.: 1984. J. Hyg. Epid. Microbiol. Immunol. 28, 129.

    Google Scholar 

  • Borg, H., Anderson, P. and Johansson, K.: 1989, Sci. Total. Environ. 87/88, 241.

    Google Scholar 

  • Buffle, J.: 1988, Complexation Reactions in Aquatic Systems: An Analytical Approach. E. Horwood, Chichester.

    Google Scholar 

  • Campbell, P. G. C. and Tessier, A.: 1987, ‘Metal Speciation in Natural Waters: Influence of Environmental Acidification’, in Sources and Fates of Aquatic Pollutants, Adv. Chem. Ser. No. 216, R. A. Heites, S. J. Eisenreich (eds.), Am. Chem. Soc., Washington, DC, pp. 185–207.

    Google Scholar 

  • Czech Ministry of Environment: 1991, Environment of Czech Republic, Práce, Praha, p. 106, source ČHMÚ (in Czech).

    Google Scholar 

  • Davis, R. B., Anderson, D. S. and Berge, F.: 1985, Nature 316, 436.

    Google Scholar 

  • Dillon, D. J., Evans, H. E. and Scholer, P. J.: 1988, Biogeochemistry 5, 201.

    Google Scholar 

  • Freidland, A. J., Johansson, A. H. and Siccama, T. G.: 1984, Water, Air Soil Pollut. 121, 161.

    Google Scholar 

  • Frimmel, F. H. and Christman, R. F. (eds.): 1988, Humic Substances and Their Role in the Environment, Wiley, New York.

    Google Scholar 

  • Hooper, R. P. and Shoemarker, C. A.: 1985, Science 229, 463.

    Google Scholar 

  • Jenne, E. A. and Zachara, J. M.: 1984, ‘Factors Influencing the Sorption of Metals’, in Fate Effects of Sediment-Bound Chemicals in Aquatic systems, Dickson, K. L., Maki, A. W. and Brungs, W. A. (eds.), Pergamon Press, New York, pp. 83–98.

    Google Scholar 

  • Jöreskog, K. G., Klova, J. E. and Reyment, R. A.: 1976, Geological Factor Analysis, Elsevier, Amsterdam.

    Google Scholar 

  • Kramer, J. C. M. and Duinker, J. C. (eds.): 1984, Complexation of Trace Metals in Natural Waters, Nijhoff/Junk Pub., The Hague.

    Google Scholar 

  • Laxen, D. P. H. and Harrison, R. M.: 1981, Anal. Chem. 53, 345.

    Google Scholar 

  • LaZerte, B., Evans, D. and Grauds, P.: 1989, Sci. Total. Environ. 87/88, 209.

    Google Scholar 

  • Lochman, V.: 1983, Lesnictví 29, 659 (in Czech).

    Google Scholar 

  • Lodenius, M. and Autio, S.: 1989, Arch. Environ. Contam. Toxicol. 18, 261.

    Google Scholar 

  • Lund, W.: 1990, ‘The Complexation of Metal Ions by Humic Substances in Natural Waters’, NATO ASI Ser., Ser. G. 23, Metal Speciation Environ., pp. 43–56.

  • Moldan, B.: 1991, Atmospheric Deposition: A Biogeochemical Process, Academia, Praha.

    Google Scholar 

  • Moldan, B. and Schnoor, J. L.: 1991, Environ. Sci. Technol. 26, 14.

    Google Scholar 

  • Nelson, W. O. and Campbell, P. G. C.: 1991, Environ. Pollution 71, 91.

    Google Scholar 

  • Norton, S. A. and Henriksen, A.: 1983, Vatten 39, 346.

    Google Scholar 

  • Norton, S. A.: 1989, ‘Watershed Acidification — A Chromatographic Process’, in Regional Acidification Models, Kamari, J., Brakke, D. F., Jenkins, A., Norton, S. A. and Wright, R. F. (eds.), Springer, pp. 89–101.

  • Norton, S. A., Kahl, J. S., Henriksen, A. and Wright, R. F.: 1990, ‘Buffering of pH Depressions by Sediments in Streams and Lakes’, in Soils, Aquatic processes, and Lake Acidification, Norton, S. A., Lindberg, S. E. and Page, A. L. (eds.), Vol.. 4, Acidic Precipitation, Springer, pp. 133–157.

  • Paces, T.: 1985, Nature 315, 31.

    Google Scholar 

  • Revis, N. J. P., Merks, A. G. A., Valenta, P. and Ruetzel, H.: 1989, Chem. Speciation Bioavailability 1, 31.

    Google Scholar 

  • Schindler, D. W., Bayley, S. E., Cuetis, P. J., Parker, B. R., Stainton, M. P. and Kelly, C. A.: 1992, Hydrobiologia 229, 1.

    Google Scholar 

  • Sigg, L., Sturm, M. and Kistler, D.: 1987, Limnol. Oceanogr. 32, 112.

    Google Scholar 

  • Steinnes, E.: 1990, Environ. Toxicol. Chem. 9, 825.

    Google Scholar 

  • Tessier, A., Carignan, R., Dubreuil, B. and Rapin, F.: 1989, Geochim. Cosmochim. Acta 53, 1511.

    Google Scholar 

  • Vesely, J.: 1987, Lesnictví 33, 385 (in Czech).

    Google Scholar 

  • Veselý J., Beneš, P. and Ševčík, K.: 1989, Water Res. 23, 711.

    Google Scholar 

  • Veselý, J., Majer, V and Ševčík, K.: 1990, ‘Environmental Survey of Surface Waters in Bohemia and Moravia’, in Proc. of Envigeo Symp., Brno, pp. 133–142.

  • Veselý, J. and Majer, V: 1992, ‘The Major Importance of Nitrate Increase for the Acidification of Two Lakes in Bohemia’, in Documenta Ist. ital. Idrobiol. 32, pp. 83–92.

    Google Scholar 

  • Veselý, J., Almquist-Jacobson, H., Miller, L. M., Norton, S. A., Appleby, P., Dixit, A. S. and Smol. J. P.: 1993, J. Paleolimnol. 8, 211.

    Google Scholar 

  • Vesely J.: 1994, ‘Effects of Acidification on Trace Metal Transport in Freshwaters’, Chpt. 10. in Acidification of Freshwater Ecosystems, Wright, R. F. and Steinberg, C. (eds.), Wiley, pp. 141–151.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselý, J., Majer, V. The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: A statistical approach. Water Air Soil Pollut 88, 227–246 (1996). https://doi.org/10.1007/BF00294103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294103

Key words

Navigation