Skip to main content
Log in

Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chromosomes and Ti plasmids of 41 Agrobacterium strains, belonging to biovars 1, 2, 3, and Agrobacterium rubi species were characterized by the restriction fragment length polymorphism of PCR-amplified DNAs. Profiles that were obtained by the analysis of the amplified 16S rDNA confirmed the grouping of the strains according to their species. Higher polymorphism was detected in the intergenic spacer between the 16S rDNA and 23S rDNA genes, allowing efficient discrimination of strains. Identification of most strains was possible, and the genetic relatednesses of Agrobacterium strains could be estimated. The analysis of the plasmid Ti encoded regions between the tmr and nos genes, and the virA and virB2 genes, allowed fingerprinting of Ti plasmids. Genomic typing by the rapid PCR-RFLP method is thus shown to be useful for an independant identification of strains and of the conjugative Ti plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

RFLP:

restriction fragment length polymorphism

IGS:

intergenic spacer

References

  • AlarçonB, LopezM, CombraM, OrtizJ (1987) Comparative study of Agrobacterium biotypes 1, 2 and 3 by electrophoresis and serological method. J Appl Bacteriol 62: 295–308

    Google Scholar 

  • AndersonAR, MooreLW (1979) Host specificity in the genus Agrobacterium. Phytopathology 69: 320–323

    Google Scholar 

  • BeadsleyRE (1955) Phage production by crown gall bacteria and the formation of plant tumors. Am Nat 89: 175–176

    Google Scholar 

  • BevanM, BarnesWM, ChiltonMD (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11: 369–385.

    Google Scholar 

  • BouzarH, MooreLW (1987) Complementary methodologies to identify specific Agrobacterium strains. Appl Environ Microbiol 53: 2660–2665

    Google Scholar 

  • BrosiusJ, DullTJ, SleeterDD, NollerHF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148: 107–127

    Google Scholar 

  • CubetaMA, EchandiE, AbernethyT, VigalysR (1991) Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81: 1395–1400

    Google Scholar 

  • DeCleeneM, DeLeyJ (1976) The host range of crown-gall. Bot Rev 42: 389–466

    Google Scholar 

  • DeLeyJ, TigatR, DeSmedtJ, MichielsM (1973) Thermal stability of DNA/DNA hybrids within the genus Agrobacterium. J Gen Microbiol 72: 242–252

    Google Scholar 

  • DhaeseP, DeGreveH, DecraemerH, SchellJ, VanMontaguM (1979) Rapid mapping of transposon insertion an deletion in the large Ti plasmids of Agrobacterium tumefaciens. Nucleic Acids Res 7: 1837–1849

    Google Scholar 

  • DorschM, LaneD, StackebrandtE (1992) Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int J Syst Bacteriol 42: 58–63

    Google Scholar 

  • GenetelloC, VanLarebeckeN, HolstersM, DePickerA, VanMontaguM, SchellJ (1977) Ti plasmids of Agrobacterium tumefaciens as conjugative plasmids. Nature 265: 561–563

    Google Scholar 

  • GurtlerV, WilsonVA, MayallBC (1991) Classification of medically important Clostridia using restriction endonuclease site differences of PCR-amplified 16S rDNA. J Gen Microbiol 137: 2673–2679

    Google Scholar 

  • HolmesB, RobertsP (1981) The classification, identification and nomenclature of Agrobacterium. J Appl Bacteriol 50: 443–467

    Google Scholar 

  • HunterPR, GastonMA (1988) Numerical index of the discriminating ability of typing systems: an application of the Simpson's index of diversity. J Clin Microbiol 26: 2456–2466

    Google Scholar 

  • JamannS, FernandezMP, NormandP (1993) Typing method for N2-fixing bacteria based on PCR-RFLP: application to the characterization of Frankia strains. Mol Ecol 2: 17–26

    Google Scholar 

  • KeanePJ, KerrA, NewPB (1970) Crown gall of stone fruit: identification and nomenclature of Agrobacterium isolates. Austr J Biol Sci 23: 585–595

    Google Scholar 

  • KerrA (1971) Acquisition of virulence by non pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Pathol 1: 241–246

    Google Scholar 

  • KerstersK, DeLeyJ, SneathPHA, SackinM (1973) Numerical taxonomic analysis of Agrobacterium isolates. J Gen Microbiol 78: 227–239

    Google Scholar 

  • MelchersLS, HooykaasPJJ (1987) Virulence of Agrobacterium. Oxford Surv Plant Mol Cell Biol 4: 167–220

    Google Scholar 

  • MichelMF, BrasileiroCM, DepierreuxC, OttenL, DelmotteF, JouaninL (1990) Identification of different Agrobacterium strains isolated from the same forest nursery. Appl Environ Microbiol 56: 3537–3545

    Google Scholar 

  • MullisKB, FaloonaFA (1987) Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Methods Enzymol 155: 335–350

    Google Scholar 

  • NavarroE, SimonetP, NormandP, BardinR (1992) Characterization of natural population of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157: 107–115

    Google Scholar 

  • NazaretS, CournoyerB, NormandP, SimonetP (1991) Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J Bacteriol 173: 1456–1471

    Google Scholar 

  • NeiM, LiWH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273

    Google Scholar 

  • NesmeX, MichelMF, DigatB (1987) Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Appl Environ Microbiol 53: 655–659

    Google Scholar 

  • NesmeX, PonsonnetC, PicardC, NormandP (1992) Chromosomal and pTi genotypes of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiol 101: 189–196

    Google Scholar 

  • NormandP, CournoyerB, SimonetP, NazaretS (1992) Analysis of a ribosomal RNA operon in the actinomycete Frankia. Gene. 111: 119–124

    Google Scholar 

  • OphelK, KerrA (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40: 236–241

    Google Scholar 

  • PaulusF, HussB, BonnardG, RidéM, SzegediE, TempéJ, PetitA, OttenL (1989) Molecular systematics of biotope III Ti plasmids of Agrobacterium tumefaciens. Mol Plant-Microbe Interactions 2: 64–74

    Google Scholar 

  • PetitA, TempéJ, KerrA, HolstersM, VanMontaguM, SchellJ (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271: 570–572

    Google Scholar 

  • PetitA, BerkaloffA, TempéJ (1986) Multiple transformation of plant cell by Agrobacterium may be responsible for the complex organization of T-DNA in crown gall and hairy root. Mol Gen Genet 202: 388–393

    Google Scholar 

  • PopoffMY, KerstersK, KivedjianM, MirasI, CoynaultC (1984) Position taxonomique de souches d'Agrobacterium d'origine hospitalière. Ann Microbiol (Institut Pasteur) A 135: 427–442

    Google Scholar 

  • RegneryRL, SpruillCL, PlikaytisBD (1991) Genotypic identification of Rickettsiae and estimation of intraspecies sequences divergences for portions of two Rickettsial genes. J Bacteriol 173: 1576–1589

    Google Scholar 

  • RogowskyPM, PowellBS, ShirasuK, LinTS, MorelP, ZyprianEM, SteckTR, KadoCI (1990) Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63 kbp regulon cloned as a single unit. Plasmid 23: 85–106.

    Google Scholar 

  • RouvierC, NazaretS, FernandezM, PicardB, SimonetP, NormandP (1992) rrn and nif intergenic spacers and isoenzyme patterns as tool to characterize Casuarina-infective Frankia strains. Acta Oecol 13: 487–495

    Google Scholar 

  • SokalRR, SneathPHA (1963) The construction of a taxonomic system. In: Principles of numerical taxonomy, chap 7. Freeman, San Francisco, pp 169–210

    Google Scholar 

  • VanLarebeckeN, EnglerG, HolstersM, Van denElsackerS, ZaenenI (1974) Large plasmid in Agrobacterium tumefaciens is essential for Crowngall-inducing ability. Nature 252: 169–170

    Google Scholar 

  • VilgalysR, HesterM (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172: 4238–4246

    Google Scholar 

  • WabikoH, KagayaM, SanoH (1991) Polymorphism of nopalinetype T-DNAs from Agrobacterium tumefaciens. Plasmid 25: 3–15

    Google Scholar 

  • WinnansSC (1992) Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 56: 12–31

    Google Scholar 

  • WillemsA, CollinsD (1993) Phylogenetic analysis of Rhizobia and Agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43: 305–313

    Google Scholar 

  • YangD, OyaizuY, OyaizuH, OlsenGJ, WoeseCR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447

    Google Scholar 

  • YanofskyM, LoweB, MontoyaA, RubinR, KrulW, GordonM, NesterE (1985) Molecular and genetic analysis of factors controlling host-range in Agrobacterium tumefaciens. Mol Gen Genet 201: 237–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Funded by Institut National de la Recherche Agronomique

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponsonnet, C., Nesme, X. Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch. Microbiol. 161, 300–309 (1994). https://doi.org/10.1007/BF00303584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00303584

Key words

Navigation