Skip to main content
Log in

Neuropeptides in the insect brain: a review

  • Review Article
  • Published:
Cell and Tissue Research Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A :

alanine

C :

cysteine

D :

aspartate

E :

glutamate

F :

phenylalanine

G :

glycine

H :

histidine

I :

isoleucine

K :

lysine

L :

leucine

M :

methionine

N :

asparagine

P :

proline

Q :

glutamine

R :

arginine

S :

serine

T :

threonine

V :

valine

W :

tryptophan

Y :

tyrosine

References

  • Adams ME, O'Shea M (1983) Peptide cotransmitter at a neuromuscular junction. Science 221:286–288

    Google Scholar 

  • Albers HE, Liou SY, Stopa EG, Zoeller RT (1991) Interaction of colocalized neuropeptides: Functional significance in the circadian timing system. J Neurosci 11:846–851

    Google Scholar 

  • Arbiser ZK, Beltz BS (1991) SCPB-and FMRFamide-like immunoreactivities in lobster neurons: colocalization of distinct peptides or colabeling of the same peptide(s)? J Comp Neurol 306:417–424

    Google Scholar 

  • Bartfai T, Iverfeldt K, Fisone G, Serfoso P (1988) Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310

    Google Scholar 

  • Bishop CA, O'Shea M (1982) Neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH): immunocytochemical mapping of neurons in the central nervous system of the cockroach. J Comp Neurol 207:223–238

    Google Scholar 

  • Bishop CA, O'Shea M, Miller RJ (1981) Neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH): immunochemical detection and neuronal localization in insect central nervous system. Proc Natl Acad Sci USA 78:5899–5902

    Google Scholar 

  • Breidbach O, Dircksen H (1991) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nerve cord and the brain of the meal beetle Tenebrio molitor during postembryonic development. Cell Tissue Res 265:129–144

    Google Scholar 

  • Buchner E (1991) Genes expressed in the adult brain of Drosophila and effects of their mutations on behavior: A survey of transmitter-and second messenger-related genes. J Neurogenet 7:153–192

    Google Scholar 

  • Cantera R, Hansson BS, Hallberg E, Nässel DR (1992) Postembryonic development of leucokinin I immunoreactive neurons innervating a neurohemal organ in the turnip moth Agrotis segetum. Cell Tissue Res 269:65–77

    Google Scholar 

  • Chin AC, Reynolds ER, Scheller RH (1990) Organization and expression of the Drosophila FMRFamide-related prohormone gene. DNA Cell Biol 9:263–271

    Google Scholar 

  • Coast GM, Rayne RC, Hayes TK, Mallet AI, Thompson KSJ, Bacon JP (1992) A comparison of the effects of two putative diuretic hormones from Locusta migratoria on isolated locust Malpighian tubules. J Exp Biol 175:1–4

    Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1991) The biochemical basis of neuropharmacology, 6th edn. Oxford University Press, New York Oxford

    Google Scholar 

  • Copenhaver PF, Truman JW (1986) Identification of the cerebral neurosecretory cells that contain eclosion hormone in the moth Manduca sexta. J Neurosci 6:1738–1747

    Google Scholar 

  • Cropper EC, Tonenbaum R, Kolks MAG, Kupferman I, Weiss KR (1987) Myomodulin: a bioactive neuropeptide present in an identified cholinergic buccal motor neuron of Aplysia. Proc Natl Acad Sci USA 84:5483–5486

    Google Scholar 

  • Cropper EC, Miller MW, Tenenbaum R, Kolks MAG, Kupferman I, Weiss KR (1988) Structure and action of buccalin: a modulatory neuropeptide localized to an identified small cardioactive peptide-containing cholinergic motorneuron on Aplysia californica. Proc Natl Acad Sci USA 85:6177–6181

    Google Scholar 

  • Cuthbert BA, Evans PD (1989) A comparison of the effects of FMRFamide-like peptides on locust heart and skeletal muscle. J Exp Biol 144:395–415

    Google Scholar 

  • Darmer D, Schmutzler C, Diekhoff D, Grimmelikhuijzen CJP (1991) Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2). Proc Natl Acad Sci USA 88:2555–2559

    Google Scholar 

  • Davenport AP, Evans PD (1986) Sex-related differences in the concentration of Met-enkephalin-like immunoreactivity in the nervous system of an insect, Schistocerca gregaria, revealed by radioimmunoassay. Brain Res 383:319–322

    Google Scholar 

  • Davis MT, Vakharia VN, Henry J, Kempe T, Raina A (1992) Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea. Proc Natl Acad Sci USA 89:142–146

    Google Scholar 

  • Davis NT, Hildebrand JG (1992) Vasopressin-immunoreactive neurons and neurohemal systems in cockroaches and mantids. J Comp Neurol 320:381–393

    Google Scholar 

  • Davis NT, Velleman SG, Kingan TG, Keshishian H (1989) Identification and distribution of a proctolin-like neuropeptide in the nervous system of the gypsy moth, Lymantria dispar, and in other epidoptera. J Comp Neurol 283:71–85

    Google Scholar 

  • De Loof A (1987) The impact of the discovery of vertebrate-type steroids and peptide hormone-like substances in insects. Entomol Exp Appl 45:105–113

    Google Scholar 

  • De Loof A, Schoofs L (1990) Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comp Biochem Physiol [B] 95:459–468

    Google Scholar 

  • Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust Locusta migratoria: an immunocytochemical study of the ventral cord and peripheral innervation. Cell Tissue Res 263:439–457

    Google Scholar 

  • Dores RM, McDonald LK, Stevenson TC, Sei CA (1990) The molecular evolution of neuropeptides: prospects of the '90s. Brain Behav Evol 36:80–99

    Google Scholar 

  • Duve H, Thorpe A (1988) Mapping of enkephalin-related peptides in the nervous system of the blowfly, Calliphora vomitoria, and their colocalization with cholecystokinin (CCK)- and pancreatic polypeptide (PP)-like peptides. Cell Tissue Res 251:399–415

    Google Scholar 

  • Duve H, Johnsen AH, Sewell JC, Scott AG, Orchard I, Rehfeld JF, Thorpe A (1992) Isolation, structure, and activity of-Phe-Met-Arg-Phe-NH2 neuropeptides (designated calliFMRFamides) from the blowfly Calliphora vomitoria. Proc Natl Acad Sci USA 89:2326–2330

    Google Scholar 

  • Eckert M, Agricola H, Penzlin H (1981) Immunocytochemical identification of proctolin-like immunoreactivity in the terminal ganglion and hindgut of the cockroach Periplaneta americana (L). Cell Tissue Res 217:633–645

    Google Scholar 

  • Eipper BA, Mains RE, Herbert E (1986) Peptides in the nervous system. Trends Neurosci 9:463–468

    Google Scholar 

  • El-Shaly M, Abou-El-Ela R, Falkmer S, Grimelius L, Wilander E (1980) Immunohistochemical evidence of gastro-entero-pancreatic neurohormonal peptides of vertebrate type in the nervous system of a dipteran insect, the hoverfly Eristalis aenus. Regul Pept 1:187–204

    Google Scholar 

  • Erber J, Kloppenburg P, Scheidler A (1991) Neuromodulation in the honeybee: autoradiography, behavior and electrophysiology. In: Goodman L, Fischer T (eds) The behavior and physiology of bees. CAB International, Wallington, pp 273–287

    Google Scholar 

  • Erspamer V (1981) The tachykinin peptide family. Trends Neurosci 4:267–273

    Google Scholar 

  • Evans PD, Cournil I (1990) Co-localization of FLRF- and vasopressin-like immunoreactivity in a single pair of sexually dimorphic neurones in the nervous system of the locust. J Comp Neurol 292:331–348

    Google Scholar 

  • Evans PD, Myers CM (1986) Peptidergic and aminergic modulation of insect skeletal muscle. J Exp Biol 124:143–176

    Google Scholar 

  • Ford R, Jackson DM, Tetrault L, Torres JC, Assanah P, Harper J, Leung MK, Stefano GB (1986) A behavioral role for enkephalins in regulating locomotor activity in the insect Leucophaea maderae: evidence for high affinity kappa-like opioid binding sites. Comp Biochem Physiol [C] 85:61–66

    Google Scholar 

  • Gäde G (1990) The adipokinetic hormone/red pigment-concentrating hormone peptide family: structures, interrelationships and functions. J Insect Physiol 36:1–12

    Google Scholar 

  • Girardie J, Girardie A, Huet JC, Pernollet JC (1989) Amino acid sequence of locust neuroparsins. FEBS Lett 245:4–8

    Google Scholar 

  • Greenberg MJ, Payza K, Nachman RJ, Holman GM, Price DA (1988) Relationships between the FMRFamide-related peptides and other peptide families. Peptides 9:125–135

    Google Scholar 

  • Groome JR, Tillinghast EK, Townley MA, Vetrovs A, Watson WI, Hunt DF, Griffin PR, Alexander JE, Shabanowitz J (1990) Identification of proctolin in the central nervous system of the horseshoe crab, Limulus polyphemus. Peptides 11:205–211

    Google Scholar 

  • Guillemin R (1978) Peptides in the brain: the new endocrinology of the neurone. Science 202:390–402

    Google Scholar 

  • Hagedorn HH, Hildebrand JG, Kidwell MG, Law JH (eds) (1990) Molecular insect science. Plenum Press, New York

    Google Scholar 

  • Halton DW, Shaw C, Maule AG, Johnston CF, Fairweather I (1992) Peptidergic messengers: a new perspective of the nervous system of parasitic platyhelminths. J Parasitol 78:179–193

    Google Scholar 

  • Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57

    Google Scholar 

  • Hekimi S, Fischer-Lougheed J, O'Shea M (1991) Regulation of neuropeptide stoichiometry in neurosecretory cells. J Neurosci 11:3246–3256

    Google Scholar 

  • Helke CJ, Krause JE, Mantyh PW, Couture R, Bannon MJ (1990) Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms. FASEB J 4:1606–1615

    Google Scholar 

  • Hietter H, Van DA, Luu B (1991) Characterization of three structurally-related 8–9 kDa monomeric peptides present in the corpora cardiaca of Locusta: a revised structure for the neuroparsins. Insect Biochem 21:259–264

    Google Scholar 

  • Hökfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    Google Scholar 

  • Hökfelt T, Johansson O, Ljungdahl Å, Lundberg JM, Schultzberg M (1980) Peptidergic neurons. Nature 284:515–521

    Google Scholar 

  • Holman GM, Cook BJ, Nachman RJ (1986) Isolation, primary structure and synthesis of leucomyosupressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp Biochem Physiol [C] 85:329–333

    Google Scholar 

  • Holman GM, Nachman RJ, Wright MS (1990a) Comparative aspects of insect myotropic peptides. In: Epple A, Scanes CG, Stetson MH (eds) Progress in comparative endocrinology. Wiley-Liss, New York, pp 35–39

    Google Scholar 

  • Holman GM, Nachman RJ, Wright MS (1990b) Insect neuropeptides. Annu Rev Entomol 35:201–217

    Google Scholar 

  • Holman GM, Nachman RJ, Schoofs L, Hayes TK, Wright MS, DeLoof A (1991) The Leucophaea maderae hindgut preparation: a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem 21:107–112

    Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and subesophageal ganglion of the sphinx moth Manduca sexta and colocalization with SCPB-, BPP- and GABA-like immunoreactivity. Cell Tissue Res 259:401–419

    Google Scholar 

  • Homberg U, Davis NT, Hildebrand JG (1991a) Peptide immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth Manduca sexta. J Comp Neurol 303:35–52

    Google Scholar 

  • Homberg U, Würden S, Dircksen H, Rao KR (1991b) Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357

    Google Scholar 

  • Horodyski FM, Riddiford LM, Truman JW (1989) Isolation and expression of the eclosion hormone gene from the tobacco hornworm moth Manduca sexta. Proc Natl Acad Sci USA 86:8123–8127

    Google Scholar 

  • Iwami M, Kawakami A, Ishizaki H, Takahashi SY, Adachi T, Suzuki Y, Nagasawa H, Suzuki A (1989) Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori with prothoracicotropic activity. Dev Growth Differ 31:31–37

    Google Scholar 

  • Johard HAD, Lundquist CT, Rökaeus Å, Nässel DR (1992) Autoradiographic localization of 125I-galanin binding sites in the blowfly brain. Regul Pept 42:123–134

    Google Scholar 

  • Johnson HM, Downs MO, Pontzer CH (1992) Neuroendocrine peptide hormone regulation of immunity. Chem Immunol 52:49–83

    Google Scholar 

  • Kataoka H, Toshi A, Li JP, Carney RL, Schooley DA, Kramer SJ (1989) Identification of an allatotropin from adult Manduca sexta. Science 243:1481–1483

    Google Scholar 

  • Kay I, Wheeler CH, Coast GM, Totty NF, Cusinato O, Patel M, Goldsworthy GJ (1991) Characterization of a diuretic peptide from Locusta migratoria. Biol Chem Hoppe Seyler 372:929–934

    Google Scholar 

  • Kingan TG, Teplow DB, Phillips JM, Riehm JP, Rao KR, Hildebrand JG, Homberg U, Kammer AE, Jardine I, Griffin PR, Hunt DF (1990) A new peptide in the FMRFamide family isolated from the CNS of the hawkmoth, Manduca sexta. Peptides 11:849–856

    Google Scholar 

  • Kingan TG, Blackburn MB, Raina AK (1992) The distribution of pheromone-biosynthesis-activating neuropeptide (PBAN) immunoreactivity in the central nervous system of the corn earworm moth, Helicoverpa zea. Cell Tissue Res 270:229–240

    Google Scholar 

  • Kobayashi M, Muneoka Y (1989) Functions, receptors and mechanisms of the FMRFamide-related peptides. Biol Bull 177:206–209

    Google Scholar 

  • Kobayashi M, Suzuki A (1992) Invertebrate neuropeptides: their localization, structure and function. Multi-author review. Experientia 48:423–473

    Google Scholar 

  • Kono T, Mizoguchi A, Nagasawa H, Ishizaki H, Fugo H, Suzuki A (1990) A monoclonal antibody against a synthetic carboxyl-terminal fragment of the silkworm, Bombyx mori: characterization and application to immunohistochemistry and affinity chromatography. Zool Sci 7:47–54

    Google Scholar 

  • Konopinska D, Rosinski G, Sobótka W (1992) Insect peptide hormones, an overview of the present literature. Int J Protein Res 39:1–11

    Google Scholar 

  • Kramer KJ, Speirs RD, Childs CN (1977) Immunocytochemical evidence for a gastrin-like peptide in the insect neuroendocrine system. Gen Comp Endocrinol 32:423–426

    Google Scholar 

  • Kramer SJ, Toschi A, Miller CA, Kataoka H, Quistad GB, Li JP, Carney RL, Schooley DA (1991) Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc Natl Acad Sci USA 88:9458–9462

    Google Scholar 

  • Krause JE, Hershey AD, Dykema PE, Takeda Y (1990) Molecular biological studies on the diversity of chemical signalling in tachykinin peptidergic neurons. In: Koob FG, Sandman CA, Strand FL (eds) A decade of neuropeptides: past, present, and future. NY Acad Sci 579:254–272

  • Kravitz EA (1988) Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science 241:1775–1781

    Google Scholar 

  • Krieger DT (1983) Brain peptides: what, where, why? Science 222:975–985

    Google Scholar 

  • Kuniyoshi H, Nagasawa H, Ando T, Suzuki A, Nachman RJ, Holman GM (1992) Cross-activity between pheromone biosyn-thesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci Biotechnol Biochem 56:167–168

    Google Scholar 

  • Lehmann J (1990) Neuropeptide Y: an overview. Drug Dev Res 19:329–351

    Google Scholar 

  • Leung MK, Stefano GB (1984) Isolation and identification of enkephalins in the pedal ganglia of Mytilus edulis (Mollusca). Proc Natl Acad Sci USA 81:955–958

    Google Scholar 

  • Li XJ, Wolfgang W, Wu YN, North RA, Forte M (1991) Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO J 10:3221–3229

    Google Scholar 

  • Li XJ, Wu YN, North RA, Forte M (1992) Cloning, functional expression and developmental regulation of a neuropeptide Y receptor from Drosophila melanogaster. J Biol Chem 267:9–12

    Google Scholar 

  • Loi PK, Cheung CC, Lee TD, Tublitz NJ (1992) Amino acid sequence and molecular analysis of insect cardioactive peptides. Soc Neurosci Abstr 18:472

    Google Scholar 

  • Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6:325–333

    Google Scholar 

  • Lundquist CT, Nässel DR (1990) Substance P-, FMRFamide-, and gastrin/cholecystokinin-like immunoreactive neurons in the thoraco-abdominal ganglia of the flies Drosophila and Calliphora. J Comp Neurol 294:161–178

    Google Scholar 

  • Lundquist CT, Rökaeus Å, Nässel DR (1991) Galanin immunore-activity in the blowfly nervous system: localization and chromatographic analysis. J Comp Neurol 312:77–96

    Google Scholar 

  • Lundquist CT, Rökaeus Å, Nässel DR (1992) Galanin message-associated peptide-like immunoreactivity in the nervous system of the blowfly: distribution and chromatographic characterization. J Neuroendocrinol 4:605–616

    Google Scholar 

  • Lüschen W, Buck F, Willig A, Jaros PP (1991) Isolation, sequence analysis and physiological properties of enkephalins in the nervous tissue of the shore crab Carcinus maenas L. Proc Natl Acad Sci USA 88:8671–8675

    Google Scholar 

  • Matsumoto S, Brown MR, Crim JW, Vigna SR, Lea AO (1989) Isolation and primary structure of neuropeptides from the mosquito, Aedes aegypti, immunoreactive to FMRFamide antiserum. Insect Biochem 19:277–283

    Google Scholar 

  • Menn JJ, Kelly TJ, Masler EP (eds) (1991) Insect neuropeptides: chemistry, biology and actions, (ACS Symposium series, vol 453). American Chemical Society, Washington, DC

    Google Scholar 

  • Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Susuki A, Fujino M, Kitada C (1987) A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol 51:227–235

    Google Scholar 

  • Mohr E, Fehr S, Richter D (1991) Axonal transport of neuropeptide encoding mRNAs within the hypothalamo-hypophyseal tract of rats. EMBO J 10:2419–2424

    Google Scholar 

  • Mohrherr CJ, Rao KR, Riehm JP (1991) Characterization of a pigment-dispersing factor from the American cockroach. Soc Neurosci Abstr 17:276

    Google Scholar 

  • Monnier D, Colas JF, Rosay P, Hen R, Borelli E, Maroteaux L (1992) NKD, a developmentally regulated tachykinin receptor in Drosophila. J Biol Chem 267:1298–1302

    Google Scholar 

  • Moshitzky P, Yamashiro DF, Stuve L, Ramachandran J, Appelbaum SW (1987) Determination of locust AKH I by radioimmunoassay and the identification of an AKH I-like factor in the locust brain. Insect. Biochem 17:765–769

    Google Scholar 

  • Nachman RJ, Roberts VA, Holman GM, Trainer JA (1990) Consensus chemistry and conformation of an insect neuropeptide family analogous to tachykinins. In: Epple A, Scanes CG, Stetson MH (eds) Progress in comparative endocrinology. Wiley-Liss, New York, pp 60–66

    Google Scholar 

  • Nässel DR (1987) Neuroactive substances in the insect CNS. In: Ali MA (ed) Nervous systems in invertebrates. (NATO ASI series, vol 141) Plenum Press, New York, pp 171–212

    Google Scholar 

  • Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85

    Google Scholar 

  • Nässel DR (1991) Neurotransmitters and neuromodulators in the insect visual system. Prog Neurobiol 37:179–254

    Google Scholar 

  • Nässel DR (1993) Insect myotropic peptides: differential distribution of locustatachykinin and leucokinin-like immunoreactive neurons in the locust brain. Cell Tissue Res (in press)

  • Nässel DR, Lundquist CT (1991) Insect tachykinin-like peptide: distribution of leucokinin immunoreactive neurons in the cockroach and blowfly brains. Neurosci Lett 130:225–228

    Google Scholar 

  • Nässel DR, O'Shea M (1987) Proctolin-like immunoreactive neurons in the blowfly central nervous system. J Comp Neurol 265:437–454

    Google Scholar 

  • Nässel DR, Ohlsson LG, Cantera R (1988a) Metamorphosis of identified neurons innervating thoracic neurohaemal organs in the blowfly: transformation of cholecystokinin-like immunoreactive neurons. J Comp Neurol 267:343–356

    Google Scholar 

  • Nässel DR, Ohlsson LG, Johansson KUI, Grimmelikhuijzen CJP (1988b) Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide. Neuroscience 27:347–362

    Google Scholar 

  • Nässel DR, Holmqvist BI, Movérus BJA (1989) Vasopressin- and proctolin-like immunoreactive efferent neurons in blowfly abdominal ganglia: development and ultrastructure. J Comp Neurol 283:450–463

    Google Scholar 

  • Nässel DR, Lundquist CT, Höög A, Grimelius L (1990) Substance P-like immunoreactive neurons in the nervous system of Drosophila. Brain Res 507:225–233

    Google Scholar 

  • Nässel DR, Shiga S, Wikstrand EM, Rao KR (1991) Pigmentdispersing hormone immunoreactive neurons and their relation to serotonergic neurons in the blowfly and cockroach visual system. Cell Tissue Res 266:511–523

    Google Scholar 

  • Nässel DR, Cantera R, Karlsson A (1992a) Neurons in the cockroach nervous system reacting with antisera to the neuropeptide leucokinin I. J Comp Neurol 322:45–67

    Google Scholar 

  • Nässel DR, Lundquist CT, Brodin E (1992b) Diversity in tachykinin-like peptides in the insect brain. Acta Biol Hung 43:175–188

    Google Scholar 

  • Nässel DR, Cantera R, Johard HAD, Lundquist CT, Muren E, Shiga S (1992c) Organization of peptidergic pathways in insects. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Dehli, pp 189–212

    Google Scholar 

  • Nässel DR, Shiga S, Mohrherr CJ, Rao KR (1993) Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization, J Comp Neurol (in press)

  • Nagasawa H (1992) Neuropeptides of the silkworm, Bombyx mori. Experientia 48:425–430

    Google Scholar 

  • Nambu JR, Murphy-Erdosh C, Andrews PC, Feistner GJ, Scheller RH (1988) Isolation and characterization of a Drosophila neuropeptide family. Neuron 1: 55–61

    Google Scholar 

  • Nichols R, Schneuwly SA, Dixon JE (1988) Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J Biol Chem 263:12167–12170

    Google Scholar 

  • O'Brien MA, Schneider LE, Taghert PH (1991) In situ hybridization analysis of the FMRFamide neuropeptide gene in Drosophila. II. Constancy in the cellular pattern of expression during metamorphosis. J Comp Neurol 304:623–638

    Google Scholar 

  • Orchard I (1987) Adipokinetic hormone: an update. J Insect Physiol 33:451–463

    Google Scholar 

  • Orchard I, Belanger JH, Lange AB (1989) Proctolin: a review with emphasis on insects. J Neurobiol 20:470–496

    Google Scholar 

  • O'Shea M, Rayne RC (1992) Adipokinetic hormones: cell and molecular biology. Experientia 48:430–438

    Google Scholar 

  • O'Shea M, Schaffer M (1985) Neuropeptide function: the invertebrate contribution Annu Rev Neurosci 8:171–198

    Google Scholar 

  • O'Shea M, Adams ME, Bishop C, Witten J, Worden MA (1985) Model peptidergic systems at the insect neuromuscular junction. Peptides 6:417–424

    Google Scholar 

  • Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A (1991) Lom-AG-Myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 12:7–10

    Google Scholar 

  • Paemen L, Schoofs L, De Loof A (1992) Localization of Lom-AG-myotropin I-like substances in the male reproductive and nervous tissue of the locust, Locusta migratoria. Cell Tissue Res 268:91–97

    Google Scholar 

  • Pagés M, Jiménez F, Ferrús A, Peralta E, Ramirez G, Gelpí E (1983) Enkephalin-like immunoreactivity in Drosophila melanogaster. Neuropeptides 4:87–98

    Google Scholar 

  • Pasztor VM, Lange AB, Orchard I (1988) Stretch-induced release of proctolin from the dendrites of a lobster sense organ. Brain Res 458:199–203

    Google Scholar 

  • Payza K (1987) FMRFamide receptors in Helix aspersa, Peptides 8:1065–1074

    Google Scholar 

  • Plata-Salamán CR (1991) Immunoregulators in the nervous system. Neurosci Biobehav Rev 15:185–215

    Google Scholar 

  • Pratt GE, Farnsworth DE, Fok KF, Siegel NR, McCormack AL, Shabanowitz J, Hunt DF, Feyereisen R (1991) Identity of a second type of allatostatin from cockroach brains: an octadecapeptide amide with a tyrosine-rich address sequence. Proc Natl Acad Sci USA 88:2412–2416

    Google Scholar 

  • Predel R, Agricola H, Penzlin H, Linde D (1992) The cardioactive insect neuropeptide corazonin: immunochemistry and physiology. In: Elsner N, Richter DW (eds) Rhythmogenesis in neurons and networks. Thieme, Stuttgart, p 519

    Google Scholar 

  • Price DA, Greenberg MJ (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197:670–671

    Google Scholar 

  • Price DA, Greenberg MJ (1989) The hunting of the FaRPs: the distribution of FMRFamide-related peptides. Biol Bull 177:198–205

    Google Scholar 

  • Proux JP, Miller CA, Li JP, Carney RL, Girardie A, Delaage M, Schooley DA (1987) Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochem Biophys Res Commun 149:180–186

    Google Scholar 

  • Raabe M (1989) Recent developments in insect neurohormones. Plenum Press, New York

    Google Scholar 

  • Raina AK, Gäde G (1989) Insect peptide nomenclature. Insect Biochem 18:785–787

    Google Scholar 

  • Raina AK, Jaffe H, Kempe TG, Keim P, Blacher RW, Fales HM, Riley CT, Klun JA, Ridgway RL, Hayes DK (1989) Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244:796–798

    Google Scholar 

  • Rajpara SM, Garcia PD, Roberts R, Eliassen JC, Owens DF, Maltby D, Myers RM, Mayeri E (1992) Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons Neuron 9:505–513

    Google Scholar 

  • Rao KR, Riehm JP, Zahnov CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes OJ, Sattelberg RM, Jorenby WH, Hintz MF (1985) Characterization of a pigment dispersing hormone in eyestalks of the fiddler crab Uca pugilator. Pro Natl Acad Sci USA 82:5319–5322

    Google Scholar 

  • Rao KR, Mohrherr CJ, Bonomelli SL, Riehm JP, Kingan TG (1991) Insect neuropeptides: influence on color change in insects and chromatophoral pigment movements in crustaceans. In: Menn JJ, Kelly TJ, Masler EP (eds). Insect neuropeptides: chemistry, biology and actions. (ACS Symposium series, vol 453). American Chemical Society, Washington, DC, pp 110–122

    Google Scholar 

  • Rémy C, Girardie J (1980) Anatomical organization of two vasopressin-neurophysin-like neurosecretory cells throughout the central nervous system of the migratory locust. Gen Comp Endocrinol 40:27–35

    Google Scholar 

  • Rémy C, Girardie J, Dubois MP (1977) Exploration immunocytologique des ganglions cérébroïdes et sous-oesophagien du phasme Clitumnus extradentatus: existence d'une néurosécrétion apparentée à la vasopressine-neurophysine. CR Acad Sci Ser D 285:1495–1497

    Google Scholar 

  • Restifo LL, White K (1990) Molecular and genetic approaches to neurotransmitter and neuromodulator systems in Drosophila. Adv Insect Physiol 22:115–219

    Google Scholar 

  • Robb S, Packman LC, Evans PD (1989) Isolation, primary structure and bioactivity of SchistoFLRFamide, a FMRFamide-like neuropeptide from the locust Schistocerca gregaria. Biochem Biophys Res Commun 160:850–856

    Google Scholar 

  • Rökaeus Å (1987) Galanin: a newly isolated biologically active neuropeptide. Trends Neurosci 10:158–164

    Google Scholar 

  • Rökaeus Å, Brownstein MJ (1986) Construction of a porcine adrenal medullary cDNA library and nucleotide sequence analysis of two clones encoding a galanin precursor. Proc Natl Acad Sci USA 83:6287–6291

    Google Scholar 

  • Saunders SE, Kellett E, Bright K, Benjamin PJ, Burke JF (1992) Cell-specific alternative RNA splicing of an FMRFamide gene. J Neurosci 12:1033–1039

    Google Scholar 

  • Schaefer M, Picciotto MR, Kreiner T, Kaldnay KK, Taussig R, Scheller RH (1983) Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell 41:457–467

    Google Scholar 

  • Schaffer MH, Noyes BE, Slaughter CA, Thorne GC, Gaskell SJ (1990) The fruitfly Drosophila melanogaster contains a novel charged adipokinetic-hormone-family peptide. Biochem J 269:315–320

    Google Scholar 

  • Scharrer B (1987) Insects as models in neuroendocrine research. Annu Rev Entomol 32:1–16

    Google Scholar 

  • Scharrer B (1991) Neuroimmunology: the importance and role of a comparative approach. In: Stefano GB, Smith EM (eds) Advances in neuroimmunology, vol. 1. Manchester University Press, Manchester, pp 1–6

    Google Scholar 

  • Scharrer B, Stefano GB, Leung MK (1988) Opioid mechanisms in insects, with special attention to Leucophaea maderae. Cell Mol Neurobiol 8:269–284

    Google Scholar 

  • Scheller RH, Kirk MD (1987) Neuropeptides in identified Aplysia neurons: precursor structure, biosynthesis and physiological actions. Trends Neurosci 10:46–52

    Google Scholar 

  • Scheller RH, Kaldany RR, Kreiner T, Mahon AC, Nambu JR, Schaefer M, Taussig R (1984) Neuropeptides: mediators of behavior in Aplysia. Science 225:1300–1308

    Google Scholar 

  • Schildberger K, Agricola H (1992) Allatostatin-like immunoreactivity in the brains of crickets and cockroaches. In: Elsner N, Richter DW (eds) Rhythmogenesis in neurons and networks. Thieme, Stuttgart, p 489

    Google Scholar 

  • Schneider LE, Taghert PH (1988) Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc Natl Acad Sci USA 85:1993–1997

    Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1990a) Locustatachykinins I and II, two novel insect neuropeptides with homology to peptides of the vertebrate tachykinin family. FEBS Lett 261:397–401

    Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Kochansky JP, Nachman RJ, De Loof A (1990b) Locustatachykinin III and IV: two additional insect neuropeptides with homology to peptides of the vertebrate tachykinin family. Regul Pept 31:199–212

    Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1991) Isolation, identification and synthesis of locustamyoinhibiting peptide (LOM-MIP), a novel biologically active neuropeptide from Locusta migratoria. Regul Pept 36:111–119

    Google Scholar 

  • Schoofs L, Holman GM, Proost P, Van Damme J, Hayes TK, De Loof A (1992a) Locustakinin, a novel peptide from Locusta migratoria: isolation, primary structure and synthesis. Regul Pept 37:49–57

    Google Scholar 

  • Schoofs L, Tips A, Holman GM, Nachman RJ, De Loof A (1992b) Distribution of locustamyotropin-like immunoreactivity in the nervous system of Locusta migratoria. Regul Pept 37:237–254

    Google Scholar 

  • Schooley DA, Carney RL, Kataoka H, Kramer SJ, Li JP, Toschi A, Troetschler R (1991) Isolation and identification of neurohormones from Manduca sexta. In: Hagedorn HH, Hildebrand JG, Kidwell MG, Law JH (eds) Molecular insect science. Plenum Press, New York, pp 199–212

    Google Scholar 

  • Schooneveld H, Tesser GI, Veenstra JA, Romberg-Privee HM (1983) Adipokinetic hormone and AKH-like peptide demonstrated in corpora cardiaca and nervous system of Locusta migratoria by immunocytochemistry. Cell Tissue Res 230:67–76

    Google Scholar 

  • Schooneveld H, Romberg-Privee HM, Veenstra JA (1985) Adipokinetic hormone-immunoreactive peptide in the endocrine and central nervous system of several insect species: a comparative immunocytochemical approach. Gen Comp Endocrinol 57:184–194

    Google Scholar 

  • Schooneveld H, Romberg-Privee HM, Veenstra JA (1986) Immunocytochemical differentiation between adipokinetic hormone (AKH)-like peptides in neurons and glandular cells in the corpus cardiacum of Locusta migratoria and Periplaneta americana with C-terminal and N-terminal specific antisera to AKH. Cell Tissue Res 243:9–14

    Google Scholar 

  • Schürmann FW, Erber J (1990) FMRFamide-like immunoreactivity in the brain of the honey bee (Apis mellifera): a light and electron microscopical study. Neuroscience 38:797–807

    Google Scholar 

  • Sherff CM, Mulloney B (1991) Red pigment concentrating hormone is a modulator of the crayfish swimmeret system. J Exp Biol 155:21–35

    Google Scholar 

  • Sossin WS, Fisher JM, Scheller RH (1989) Cellular and molecular biology of neuropeptide processing and packaging. Neuron 2:1407–1417

    Google Scholar 

  • Stangier J, Dircksen H, Keller R (1986) Identification and immunocytochemical localization of proctolin in pericardial organs of the shore crab Carcinus maenas. Peptides 7:67–72

    Google Scholar 

  • Stangier J, Hilbich C, Keller R (1989) Occurrence of crustacean cardioactive peptide (CCAP) in the nervous system of an insect, Locusta migratoria. J Comp Physiol [B] 159:5–11

    Google Scholar 

  • Starrat AN, Brown BE (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci 17:1253–1256

    Google Scholar 

  • Stefano GB, Scharrer B (1981) High affinity binding of an enkephalin analog in the cerebral ganglion of the insect Leucophaea maderae (Blattaria). Brain Res 225:107–114

    Google Scholar 

  • Stengl M, Homberg U (1992) Pigment-dispersing hormone-immunoreactive neurons as possible candidates for the circadian pacemaker in orthopteroid insects. In: Elsner N, Richter DW (eds) Rhythmogenesis in neurons and networks. Thieme, Stuttgart, p 89

    Google Scholar 

  • Stone JV, Mordue W, Betley KE, Morris HR (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature 265:207–211

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin

    Google Scholar 

  • Taghert PH, Schneider LE (1990) Interspecific comparison of a Drosophila gene encoding FMRFamide-related neuropeptides. J Neurosci 10:1929–1942

    Google Scholar 

  • Takeda S, Viellemaringe J, Geffard M, Rémy C (1986) Immunohistological evidence of dopamine cells in the cephalic nervous system of the silkworm Bombyx mori: coexistence of dopamine and α-endorphin-like material in neurosecretory cells of the subesophageal ganglion. Cell Tissue Res 243:125–128

    Google Scholar 

  • Tamarelle M, Girardie J (1989) Immunohistochemical investigation of locust neuroparsin-like substances in several insects, in some other invertebrates and vertebrates. Histochemistry 91:431–435

    Google Scholar 

  • Thompson KSJ, Bacon JP (1991) The vasopressin-like immunoreactive (VPLI) neurons of the locust Locusta migratoria. II. Physiology. J Comp Physiol [A] 168:619–630

    Google Scholar 

  • Thompson KSJ, Tyrer NM, May sT, Bacon JP (1991) The vasopressin-like immuno-reactive (VPLI) neurons of the locust Locusta migratoria. I. Anatomy. J Comp Physiol [A] 168:605–617

    Google Scholar 

  • Thorpe A, Duve H (1987) Purification, characterization and cellular distribution of insect neuropeptides with special emphasis on their relationship to biologically active peptides of vertebrates. In: Ali MA (ed) Nervous systems in invertebrates. (NATO ASI series, vol. 141) Plenum Press, New York, pp 133–169

    Google Scholar 

  • Tublitz NJ, Copenhauer PF, Taghert PH, Truman JW (1986) Peptidergic regulation of behavior: an identified neuron approach. Trends Neurosci 9:359–363

    Google Scholar 

  • Tublitz N, Brink D, Broadie KS, Loi P, Sylwester AW (1991) From behavior to molecules: an integrated approach to the study of neuropeptides. Trends Neurosci 14:254–259

    Google Scholar 

  • Tublitz NJ, Allen AT, Cheung CC, Edwards KK, Kimble DP, Loi PK, Sylwester AW (1992) Insect cardioactive peptides: regulation of hindgut activity by cardioacceleratory peptide 2 (CAP2) during wandering behaviour in Manduca sexta larvae. J Exp Biol 165:241–264

    Google Scholar 

  • Van Leeuwen F (1986) Pitfalls in immunocytochemistry with special reference to the specificity problems in localization of neuropeptides. Am J Anat 175:363–377

    Google Scholar 

  • Veenstra JA (1988) Immunocytochemical demonstration of vertebrate peptides in invertebrates: the homology concept. Neuropeptides 12:49–54

    Google Scholar 

  • Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 250:231–234

    Google Scholar 

  • Veenstra JA, Hagedorn HH (1991) Identification of neuroendocrine cells producing a diuretic hormone in the tobacco hornworm moth, Manduca sexta. Cell Tissue Res 266:359–364

    Google Scholar 

  • Veenstra JA, Schooneveld H (1984) Immunocytochemical localization of peptidergic neurons in the nervous system of the Colorado potato beetle with antisera against FMRFamide and bovine pancreatic polypeptide. Cell Tissue Res 235:303–308

    Google Scholar 

  • Veenstra JA, Romberg-Privee, Schooneveld H (1985) A proctolin-like peptide and its immunocytochemical localization in the Colorado potato beetle, Leptinotarsa decemlineata. Cell Tissue Res 240:535–540

    Google Scholar 

  • Verhaert P, De Loof A (1985) Immunocytochemical localization of a methionine-enkephalin resembling neuropeptide in the central nervous system of the American cockroach, Periplaneta americana. J Comp Neurol 239:54–61

    Google Scholar 

  • Walker RJ (1992) Neuroactive peptides with an RFamide of Famide carboxyl terminal. Comp Biochem Physiol [C] 102:213–222

    Google Scholar 

  • Weiss KR, Brezina V, Cropper EC, Hooper SL, Miller MW, Probst WC, Vilim FS, Kupfermann I (1992) Peptidergic co-transmission in Aplysia: functional implications for rhythmic behaviors. Experientia 48:456–463

    Google Scholar 

  • Whim MD, Lloyd PE (1989) Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc Natl Acad Sci USA 86:9034–9038

    Google Scholar 

  • White K, Hurteau T, Punsal P (1986) Neuropeptide-FMRFamide-like immunoreactivity in Drosophila: development and distribution. J Comp Neurol 247:430–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nässel, D.R. Neuropeptides in the insect brain: a review. Cell Tissue Res 273, 1–29 (1993). https://doi.org/10.1007/BF00304608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00304608

Key words

Navigation