Skip to main content
Log in

The organization of the chemosensory system in Drosophila melanogaster: a rewiew

  • Review Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo- and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Article  Google Scholar 

  • Altner H, Loftus R, Schaller-Selzer L, Tichy H (1983a) Modality-specificity in insect sensilla and multimodal input from body appendages. Fortschr Zool 28:17–31

    Google Scholar 

  • Altner H, Schaller-Selzer L, Stetter H, Wohlrab I (1983b) Poreless sensilla with inflexible sockets. Cell Tissue Res 234:197–307

    Article  Google Scholar 

  • Anders G (1955) Untersuchungen über das pleiotrope Manifestationsmuster der Mutante lozenge-clawless (lzcl) von Drosophila melanogaster. Z Indukt Abstamm Vererbungslehre 87:113–186

    CAS  Google Scholar 

  • Angioy AM, Liscia A, Pietra P, Crnjar R (1978) Function of chemosensory wing hairs in Phormia regina M (abstract). 3rd ECRO Congress Pavia

  • Anholt RRH (1991) Odor recognition and olfactory transduction: the new frontier. Chem Senses 16:421–427

    Article  CAS  Google Scholar 

  • Arora K, Rodrigues V, Joshi S, Shanbhag S, Siddiqi O (1987) A gene affecting the specificity of the chemosensory neurons in Drosophila. Nature 330:62–63

    Article  CAS  PubMed  Google Scholar 

  • Ayer RK, Carlson J (1992) Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J Neurobiol 23:965–982

    Article  CAS  PubMed  Google Scholar 

  • Ayyub C, Paranjape J, Rodrigues V, Siddiqi O (1990) Genetics of olfactory behaviour in Drosophila melanogaster. J Neurogenet 6:285–262

    Article  Google Scholar 

  • Banerjee U, Zipursky SL (1990) The role of cell-cell interactions in the development of the Drosophila visual system. Neuron 4:177–187

    Article  CAS  PubMed  Google Scholar 

  • Been TH, Schomaker CH, Thomas G (1988) Olfactory sensilla on the antenna and maxillary palp of the sheep head fly, Hydrotaea irritans (Fallen) (Diptera: Muscidae). Int J Insect Morphol Embryol 17:121–133

    Article  Google Scholar 

  • Boeckh J, Ernst KD (1983) Olfactory food and mate recognition. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 78–94

    Chapter  Google Scholar 

  • Boeckh J, Tolbert LJ (1993) Synaptic organization and development of the antennal lobe in insects. Microsc Res Tech 24:260–280

    Article  CAS  PubMed  Google Scholar 

  • Boeckh J, Sandri C, Akert K (1970) Sensorische Eingänge und synaptische Verbindungen im Zentralnervensystem von Insekten. Z Zellforsch 103:429–446

    Article  CAS  PubMed  Google Scholar 

  • Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J Insect Physiol 30:15–26

    Article  Google Scholar 

  • Boeckh J, Distler P, Ernst KD, Hösl M, Malun D (1990) Olfacory bulb and antennal lobe. In: Schild D (ed) Chemosensory information processing. (NATO ASI Series H39, Cell Biology) Springer, Berlin, pp 201–227

    Chapter  Google Scholar 

  • Bolwig N (1946) Senses and sense organs of the anterior end of the house fly larvae. Vid Medd Dansk Nat Hist Foren 109:81–217

    Google Scholar 

  • Borst A (1983) Computation of olfactory signals in Drosophila melanogaster. J Comp Physiol [A] 152:373–383

    Article  Google Scholar 

  • Borst A, Heisenberg M (1982) Osmotropotaxis in Drosophila melanogaster. J Comp Physiol [A] 147:479–484

    Article  Google Scholar 

  • Brand A, Perrimon N (1991) Targeted tissue-specific expression of genes in Drosophila: a P element expression system that uses the GAL4 activator. In: Thummel C, Matthews K (eds) Drosophila information newsletter, vol 1. electronic mail publ, DISL@IUBVM.UCS.INDIANA.EDU

  • Buchner E (1991) Genes expressed in the adult brain of Drosophila and effects of their mutation on behavior: a survey of transmitter- and second messenger-related genes. J Neurogenet 7:153–192

    Article  CAS  PubMed  Google Scholar 

  • Buchner E, Rodrigues V (1983) Autoradiographic localization of [3H]choline uptake in the brain of Drosophila melanogaster. Neurosci Lett 42:25–31

    Article  CAS  PubMed  Google Scholar 

  • Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Sattelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246:57–62

    Article  CAS  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Carlson J (1991) Olfaction in Drosophila: genetic and molecular analysis. Trends Neurosci 14:520–524

    Article  CAS  PubMed  Google Scholar 

  • Chambille I, Rospars JP (1981) Deutocérébron de la blatte Blaberus craniifer Burm. (Dictyoptera: Blaberidae): étude qualitative et identification visuelle des glomérules. Int J Insect Morphol Embryol 10:141–165

    Article  Google Scholar 

  • Chu IW, Axtell RC (1971) Fine structure of the dorsal organ of the house fly larva, Musca domestica L. Z Zellforsch 117:17–34

    Article  CAS  PubMed  Google Scholar 

  • Chu-Wang IW, Axtell RC (1972a) Fine structure of the terminal organ of the house fly larva, Musca domestica L. Z Zellforsch 127:287–305

    Article  CAS  PubMed  Google Scholar 

  • Chu-Wang IW, Axtell RC (1972b) Fine structure of the ventral organ of the house fly larva, Musca domestica L. Z Zellforsch 130:489–495

    Article  CAS  PubMed  Google Scholar 

  • Cobb M, Bruneau S, Jallon JM (1992) Genetic and developmental factors in the olfactory response of Drosophila melanogaster larvae to alcohols. Proc Soc Lond (Biol) 248:103–109

    Article  CAS  Google Scholar 

  • Davis RL, Dauwalder B (1991) The Drosophila dunce locus. Trends Genet 7:224–229

    Article  CAS  PubMed  Google Scholar 

  • Deak II (1976) Demonstration of sensory neurons in the ectopic cuticle of spineless-aristapedia, a homoeotic mutant of Drosophila. Nature 260:252–254

    Article  CAS  PubMed  Google Scholar 

  • DeBelle JS, Heisenberg M (1993) Learning, memory and brain structure in Drosophila melanogaster. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour (abstract). (Proceedings 21st Göttingen Neurobiology Conference) Thieme, Stuttgart New York, p 204

    Google Scholar 

  • Dethier VG (1976) The hungry fly. Harvard University Press, Cambridge

    Google Scholar 

  • Duve H, Thorpe A (1989) Distribution and functional significance of Met-enkephalin-Arg6-Phe7-and Met-enkephalin-Arg6-Gly7-Leu8-like peptides in the blowfly Calliphora vomitoria. I. Immunocytochemical mapping of neuronal pathways in the brain. Cell Tissue Res 258:147–161

    Article  CAS  PubMed  Google Scholar 

  • Edgecomb RS, Murdock LL (1992) Central projections of axons from taste hairs on the labellum and tarsi of the blowfly, Phormia regina Meigen. J Comp Neurol 315:431–444

    Article  CAS  PubMed  Google Scholar 

  • Falk R, Bleiser-Avivi N, Atidia J (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–342

    Article  PubMed  Google Scholar 

  • Ferveur JF, Cobb M, Jallon JM (1989) Complex chemical messages in Drosophila. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York London, pp 397–409

    Chapter  Google Scholar 

  • Fischbach KF, Heisenberg M (1984) Neurogenetics and behaviour in insects. J Exp Biol 112:65–93

    Article  Google Scholar 

  • Foelix RF, Stocker RF, Steinbrecht RA (1989) Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans. Cell Tissue Res 258:277–287

    Article  CAS  PubMed  Google Scholar 

  • Frederik RD, Denell RE (1982) Embryological origin of the antenno-maxillary complex of the larva of Drosophila melanogaster (Meigen) (Diptera, Drosophilidae). Int J Insect Morphol Embryol 11:227–233

    Article  Google Scholar 

  • Fujishiro N, Kijima H, Morita H (1984) Impulse frequency and action potential amplitude in labellar chemosensory neurons of Drosophila melanogaster. J Insect Physiol 30:317–325

    Article  Google Scholar 

  • Getting PA (1971) The sensory control of motor output in fly proboscis extension. Z Vergl Physiol 74:103–120

    Article  Google Scholar 

  • Ghysen A, O'Kane C (1989) Neural enhancer-like elements as specific cell markers in Drosophila. Development 105:35–52

    Article  CAS  PubMed  Google Scholar 

  • Grabowski CT, Dethier VG (1954) The structure of the tarsal chemoreceptors of the blowfly, Phormia regina Meigen. J Morphol 94:1–17

    Article  Google Scholar 

  • Han PL, Levin LR, Reed RR, Davis RL (1992) Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9:619–627

    Article  CAS  PubMed  Google Scholar 

  • Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–368

    Article  Google Scholar 

  • Hannaford S, Palka J (1992) Function, physiology and axonal projections of the chemoreceptors of dipteran wings (abstract). Soc Neurosci 18:301

    Google Scholar 

  • Hannah-Alava A (1958) Morphology and chaetotaxy of of the legs of Drosophila melanogaster. J Morphol 103:281–310

    Article  Google Scholar 

  • Hansen K, Heumann HG (1971) Die Feinstruktur der tarsalen Schmeckhaare der Fliege Phormia terraenovae Rob.-Desv. Z Zellforsch 117:419–442

    Article  CAS  PubMed  Google Scholar 

  • Hansson BS, Ljungberg H, Hallberg E, Löfstedt C (1992) Functional specialization of olfactory glomeruli in a moth. Science 256:1313–1315

    Article  CAS  PubMed  Google Scholar 

  • Harris WA (1972) The maxillae of Drosophila melanogaster as revealed by scanning electron microscopy. J Morphol 138:451–456

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V, Posakony JW (1989) Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107:389–405

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg M (1989) Genetic approach to learning and memory (mnemogenetics) in Drosophila melanogaster. Fortschr Zool 37:3–45

    Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–21

    Article  CAS  PubMed  Google Scholar 

  • Hertweck H (1931) Anatomie und Variabilität des Nervensystems und der Sinnesorgane von Drosophila melanogaster (Meigen). Z Wiss Zool 139:559–663

    Google Scholar 

  • Hodgkin NM, Bryant PJ (1978) Scanning electron microscopy of the adult of Drosophila melanogaster. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2c. Academic Press, London New York San Francisco, pp 337–358

    Google Scholar 

  • Homberg U, Montague RA, Hildebrand JG (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501

    Article  CAS  PubMed  Google Scholar 

  • Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res 244:243–252

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Yokohari F, Tanimura T, Tominaga Y (1991) The external morphology of sensilla in the sacculus of an antennal flagellum of the fruit fly Drosophila melanogaster (Diptera: Drosophilidae). Int J Insect Morphol Embryol 20:235–244

    Article  Google Scholar 

  • Jackson FR, Newby LM, Kulkarni SJ (1990) Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase. J Neurochem 54:1068–1078

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (1987) In: Kolbow K (ed) R.H. Wright lectures on insect olfaction. Simon Fraser University, Burnaby, BC, pp 1–75

    Google Scholar 

  • Kankel DR, Ferrus A, Garen SH, Harte PJ, Lewis PE (1980) The structure and development of the nervous system. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2d. Academic Press, London New York San Francisco, pp 295–368

    Google Scholar 

  • Kanzaki R, Arbas EA, Strausfeld NJ, Hildebrand JG (1989) Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta. J Comp Physiol [A] 165:427–453

    Article  CAS  Google Scholar 

  • Keller V (1992) Immuncytochemische Untersuchungen am Antennensystem von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern. Diploma thesis, University of Fribourg

  • Kent KS, Harrow ID, Quartaro P, Hildebrand JG (1986) An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res 245:237–245

    Article  CAS  PubMed  Google Scholar 

  • Lancet D (1986) Vertebrate olfactory reception. Annu Rev Neurosci 9:329–355

    Article  CAS  PubMed  Google Scholar 

  • Laugé G (1982) Development of the genitalia and analia. In: Ransom R (ed) A handbook of Drosophila development. Elsevier, Amsterdam New York Oxford, pp 237–263

    Google Scholar 

  • Lee JK, Altner H (1986) Primary sensory projections of the labial palp-pit organ of Pieris rapae L. (Lepidoptera: Pieridae). Int J Insect Morphol Embryol 15:439–448

    Article  CAS  Google Scholar 

  • Lienhard MC, Stocker RF (1987) Sensory projection patterns of supernumerary legs and aristae in D. melanogaster. J Exp Zool 244:187–201

    Article  Google Scholar 

  • Link B (1983) REM und TEM Analyse der Sensillen des mesothorakalen Beines und des dritten Antennensegmentes von Drosophita melanogaster. Diploma thesis, University of Fribourg

  • Maes FW, Vedder CG (1978) A morphological and electrophysiological inventory of labellar taste hairs of the blowfly Calliphora vicina. J Insect Physiol 24:667–672

    Article  Google Scholar 

  • Malun D (1991) Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of Periplaneta americana: a double-labeling electron microscopic study. Histochemistry 96:197–207

    Article  CAS  PubMed  Google Scholar 

  • Masson C, Mustaparta H (1990) Chemical information processing in the olfactory system of insects. Physiol Rev 70:199–245

    Article  CAS  Google Scholar 

  • Merritt DJ (1987) The cercal sensilla of the blowfly Lucilia cuprina. I. Structure of the sockets and distal dendritic regions. Tissue Cell 19:287–298

    Article  CAS  PubMed  Google Scholar 

  • Merritt DJ, Murphey RK (1992) Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion. J Comp Neurol 322:16–34

    Article  CAS  PubMed  Google Scholar 

  • Merritt DJ, Rice MJ (1984) Innervation of the cercal sensilla on the ovipositor of the Australian sheep blowfly (Lucilia cuprina). Physiol Entomol 9:39–47

    Article  Google Scholar 

  • Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Hafner, New York London, pp 420–534

    Google Scholar 

  • Mindek G (1968) Proliferations- und Transdeterminationsleistungen der weiblichen Genital-Imaginalscheiben von Drosophila melanogaster nach Kultur in vivo. Rouxs Arch Dev Biol 161:249–280

    Article  Google Scholar 

  • Mitchell BK, Itagaki H (1992) Interneurons of the suboesophageal ganglion of Sarcophaga bullata responding to gustatory and mechanosensory stimuli. J Comp Physiol [A] 171:213–230

    Article  CAS  Google Scholar 

  • Miyakawa Y (1982) Behavioural evidence for the existence of sugar, salt and amino acid taste receptor cells and some of their properties in Drosophila larvae. J Insect Physiol 28:405–410

    Article  CAS  Google Scholar 

  • Monte P, Woodard C, Ayer R, Lilly M, Sun H, Carlson J (1989) Characterization of the larval olfactory response in Drosophila and its genetic basis. Behav Genet 19:267–283

    Article  CAS  PubMed  Google Scholar 

  • Morita H (1992) Transduction process and impulse initiation in insect contact chemoreceptor. Zool Sci 9:1–16

    CAS  Google Scholar 

  • Müller U (1993) Nitric oxide: a messenger molecule in the nervous system of the honey bee. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour (abstract). (Proceedings 21st Göttingen Neurobiology Conference) Thieme, Stuttgart New York, p 2

    Google Scholar 

  • Murphey RK, Possidente D, Pollack G, Merritt DJ (1989) Modality specific axonal projections in the CNS of the flies Phormia and Drosophila. J Comp Neurol 290:185–200

    Article  CAS  PubMed  Google Scholar 

  • Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the insect nervous system. Prog Neurobiol 30:1–85

    Article  PubMed  Google Scholar 

  • Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167

    Article  PubMed  Google Scholar 

  • Nayak SV, Singh RN (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 12:273–291

    Article  Google Scholar 

  • Nayak SV, Singh RN (1985) Primary sensory projections from labella to the brain of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 14:115–129

    Article  Google Scholar 

  • Nottebohm E, Dambly-Chaudière C, Ghysen A (1992) Connectivity of chemosensory neurons is controlled by the gene poxn in Drosophila. Nature 359:829–832

    Article  CAS  PubMed  Google Scholar 

  • O'Kane C, Gehring W (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki M (1988) A possible sugar receptor protein found in the labellum of the blowfly, Phormia regina. Zool Sci 5:281–290

    CAS  Google Scholar 

  • Palka J, Lawrence PA, Hart HS (1979) Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. Dev Biol 69:549–575

    Article  CAS  PubMed  Google Scholar 

  • Peters W (1963) Die Sinnesorgane an den Labellen von Calliphora erythrocephala Mg. (Diptera). Z Morphol Ökol Tiere 55:259–320

    Article  Google Scholar 

  • Pinto L, Stocker RF, Rodrigues V (1988) Anatomical and neurochemical classification of the antennal glomeruli in Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 17:335–344

    Article  Google Scholar 

  • Pinto L, VijayRaghavan K, Rodrigues V (1992) An enhancer-trap insertion “BTJ409” identifies a subset of chemosensory cells. In: Singh RN (ed) Nervous system: principles of design and function. Wiley Eastern, New Delhi, pp 21–31

    Google Scholar 

  • Pollack I, Hofbauer A (1991) Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tissue Res 266:391–398

    Article  CAS  PubMed  Google Scholar 

  • Possidente DR, Murphey RK (1989) Genetic control of sexually dimorphic axon morphology in Drosophila sensory neurons. Dev Biol 132:448–457

    Article  CAS  PubMed  Google Scholar 

  • Power ME (1946) The antennal centers and their connections within the brain of Drosophila melanogaster. J Comp Neurol 85:485–517

    Article  CAS  PubMed  Google Scholar 

  • Power ME (1948) The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J Comp Neurol 88:347–409

    Article  CAS  PubMed  Google Scholar 

  • Rane N, Jithra L, Pinto L, Rodrigues V, Krishnan KS (1987) Monoclonal antibodies to synaptic macromolecules of Drosophila melanogaster. J Neuroimmunol 16:331–344

    Article  CAS  PubMed  Google Scholar 

  • Restifo LL, White K (1990) Molecular and genetic approaches to neurotransmitter and neuromodulator systems in Drosophila. Adv Insect Physiol 22:115–219

    Article  Google Scholar 

  • Rice MJ (1977) Blowfly ovipositor receptor neurons sensitive to monovalent cation cencentration. Nature 268:747–749

    Article  Google Scholar 

  • Riesgo-Escovar J, Woodard C, Gaines P, Carlson J (1992) Development and organization of the Drosophila olfactory system: an analysis using enhancer traps. J Neurobiol 23:947–964

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM (1983) Chemical stimuli eliciting courtship by males in Drosophila melanogaster. Experientia 39:333–335

    Article  Google Scholar 

  • Rodrigues V (1988) Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res 453:299–307

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues V, Pinto L (1989) The antennal glomerulus as a functional unit of odor coding in Drosophila melanogaster. In: Singh RN, Straufeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York London, pp 387–393

    Chapter  Google Scholar 

  • Rodrigues V, Siddiqi O (1978) Genetic analysis of chemosensory pathway. Proc Indian Acad Sci 87B: 147–160

    Article  Google Scholar 

  • Rospars JP (1983) Invariance and sex-specific variations of the glomerular organization in the antennal lobes of a moth, Mamestra brassicae and a butterfly, Pieris brassicae. J Comp Neurol 220:80–96

    Article  CAS  PubMed  Google Scholar 

  • Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17:243–294

    Article  Google Scholar 

  • Rubin GM (1988) Drosophila melanogaster as an experimental organism. Science 240:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM (1991) Signal transduction and the fate of the R7 photoreceptor. Trends Genet 7:372–377

    Article  CAS  PubMed  Google Scholar 

  • Schimidt-Ott U, Gonzalez Gaitan M, Jäckle H, Technau GM (1993) Embryonic head phenotype of Drosophila “gap gene” mutants. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour (abstract). (Proceedings 21st Göttingen Neurobiology Conference). Thieme, Stuttgart New York, p 132

    Google Scholar 

  • Schneider D (1957) Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13:89–91

    Article  Google Scholar 

  • Shanbhag SR, Singh RN (1992a) Functional implications of the projections of neurons from individual labellar sensillum of Drosophila melanogaster as revealed by neuronal-marker horseradish peroxidase. Cell Tissue Res 267:273–282

    Article  Google Scholar 

  • Shanbhag SR, Singh RN (1992b) Functional morphology of sensory organs and the discovery of the peripheral synapses in the legs of Drosophila. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Delhi, pp 389–415

    Google Scholar 

  • Shiraishi A, Tanabe Y (1974) The proboscis extension response and tarsal and labellar chemosensory hairs in the blowfly. J Comp Physiol 92:161–179

    Article  Google Scholar 

  • Siddiqi O (1983) Olfactory neurogenetics of Drosophila. In: Chopra VL, Joshi BC, Sharma RP, Bawal HC (eds) Genetics: new frontiers, vol 3. Oxford University Press, London New York, pp 242–261

    Google Scholar 

  • Siddiqi O (1987) Neurogenetics of olfaction in Drosophila melanogaster. Trends Genet 3:137–142

    Article  CAS  Google Scholar 

  • Siddiqi O (1991) Olfaction in Drosophila. Chem Senses 3:79–96

    CAS  Google Scholar 

  • Siddiqi O, Rodrigues V (1980) Genetic analysis of a complex chemoreceptor. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and neurobiology of Drosophila. Plenum Press, New York, pp 347–359

    Chapter  Google Scholar 

  • Singh RN (1992) Neuroarchitecture of the thoracic leg neuromeres of Drosophila melanogaster. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Delhi, pp 131–144

    Google Scholar 

  • Singh RN, Nayak S (1985) Fine structure and primary sensory projections of sensilla on the maxillary palp of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 14:291–306

    Article  Google Scholar 

  • Singh RN, Singh K (1984) Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:255–273

    Article  Google Scholar 

  • Steinbrecht RA (1989) The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori: receptor membrane substructure and sensory cell contacts. Cell Tissue Res 255:49–57

    Article  Google Scholar 

  • Stengl M, Hatt H, Breer H (1992) Peripheral processes in insect olfaction. Annu Rev Physiol 54:665–681

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF (1977) Gustatory stimulation of a homeotic mutant appendage, Antennapedia, in Drosophila melanogaster. J Comp Physiol [A] 115:351–361

    Article  Google Scholar 

  • Stocker RF (1979) Fine structural comparison of the antennal nerve in the homeotic mutant Antennapedia with the wild-type antennal and second leg nerves of Drosophila melanogaster. J Morphol 160:209–222

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Gendre N (1988) Peripheral and central nervous effects of lozenge3, a Drosophila mutant lacking basiconic antennal sensilla. Dev Biol 127:12–27

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Gendre N (1989) Courtship behavior of Drosophila, genetically and surgically deprived of basiconic sensilla. Behav Genet 19:371–385

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Lawrence PA (1981) Sensory projections from normal and homeoetically transformed antennae in Drosophila. Dev Biol 82:224–237

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Schorderet M (1981) Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res 216:513–523

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Singh RN, Schorderet M, Siddiqi O (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232:237–248

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in D. melanogaster. Cell Tissue Res 262:9–34

    Article  CAS  PubMed  Google Scholar 

  • Stocker RF, Gendre N, Lienhard MC, Link B (1992) Drosophila olfaction: structural, behavioral, developmental, and genetic approach. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Delhi, pp 351–372

    Google Scholar 

  • Stocker RF, Gendre N, Batterham P (1993) Genetic analysis of the lozenge gene complex of Drosophila melanogaster: the antennal phenotype. J Neurogenet 9:29–53

    Article  CAS  PubMed  Google Scholar 

  • Störtkuhl KF, Hofbauer A, Keller V, Gendre N, Stocker RF (1994) Analysis of immunocytochemical staining patterns in the antennal system of Drosophila melanogaster. Cell Tissue Res 275:27–38

    Article  PubMed  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Tanouye MA, Wyman, RJ (1980) Motor outputs of giant nerve fiber in Drosophila. J Neurophysiol 44:405–421

    Article  CAS  PubMed  Google Scholar 

  • Taylor BJ (1989) Sexually dimorphic neurons of the terminalia of Drosophila melanogaster. II. Sex-specific axonal arborizations in the central nervous system. J Neurogenet 5:193–213

    Article  CAS  PubMed  Google Scholar 

  • Technau GM (1992) Experimentelle Ansätze zum Studium der Entwicklung des Zentralnervensystems von Drosophila. Verh Dtsch Zool Ges 85.2:111–131

    Google Scholar 

  • Tissot M (1992) Prolifération cellulaire dans les lobes antennaires du cerveau de Drosophila melanogaster. Diploma thesis, University of Fribourg

  • Van der Wolk FM, Koerten HK, Van der Starre H (1984) The external morphology of contact-chemoreceptive hairs of files and the motility of the tips of these hairs. J Morphol 180:37–54

    Article  PubMed  Google Scholar 

  • Venard R, Stocker RF (1991) Behavioral and electroantennogram analysis of olfactory stimulation in lozenge: a Drosophila mutant lacking antennal basiconic sensilla. J Insect Behav 4:683–705

    Article  Google Scholar 

  • Venard R, Antony C, Jallon JM (1989) Drosophila chemoreceptors. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York London, pp 377–385

    Chapter  Google Scholar 

  • Venkatesh S, Singh RN (1984) Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:51–63

    Article  Google Scholar 

  • Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobe of the sphinx moth, Manduca sexta. J Comp Physiol [A] 161:23–32

    Article  CAS  Google Scholar 

  • Wieczorek H, Wolff G (1989) The labellar sugar receptor of Drosophila. J Comp Physiol [A] 164:825–834

    Article  Google Scholar 

  • Wilczek M (1967) The distribution and neuroanatomy of labellar sense organs of the blowfly Phormia regina Meigen. J Morphol 122:175–201

    Article  CAS  PubMed  Google Scholar 

  • Wolbarsht ML, Dethier VG (1958) Electrical activity in the chemoreceptors of the blowfly. I. Responses to chemical and mechanical stimulation. J Gen Physiol 42:393–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yetman S, Pollack GS (1986) Central projections of labellar taste hairs in the blowfly, Phormia regina Meigen. Cell Tissue Res 245:555–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stocker, R.F. The organization of the chemosensory system in Drosophila melanogaster: a rewiew. Cell Tissue Res 275, 3–26 (1994). https://doi.org/10.1007/BF00305372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305372

Key words

Navigation