Skip to main content
Log in

Measurements of thermal expansions of small mineral crystals

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A capacitance micrometer has been developed for the measurement of thermal expansions of small crystals over moderate temperature ranges (approximately 100 K above laboratory temperature). Linear coefficients are obtained to ±0.5×10−6 K−1 and volume coefficients to ±1.5×10−6 K−1. New values are reported for 13 materials, obtained as crystals down to 1 mm in size. For many of these we obtained satisfactory agreement with earlier data, but exceptions are zircon (volume coefficient 6.6±1.6×10−6 K−1, compared with earlier values up to 21×10−6 K−1) and strontium fluoride (volume coefficient 57.9±2.2×10−6 K−1, compared with 42 to 49×10−6 K−1). The new data are combined with values of incompressibility, density and specific heat to obtain new values of Grüneisen's ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amatuni AN, Malyutina TI, Chekhovskoi VYa, Petukhov VA (1976) Standard samples for dilatometry. High Temp High Pressures 8:565–570

    Google Scholar 

  • Amatuni AN, Shevchenko EB (1966) Linear thermal expansion of quartz and aluminum oxide single crystals. Meas Tech 10:1256–1260

    Google Scholar 

  • Anderson OL (1965) Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single crystal data. In: Mason WP (ed) Physical acoustics, vol 3B., Chapter 2. Academic Press, New York, pp 43–95

    Google Scholar 

  • Anderson OL (1970) Elastic constants of the central force model for three cubic structures: pressure derivatives and equations of state. J Geophys Res 75:2719–2740

    Google Scholar 

  • Anderson OL (1979) The high-temperature acoustic Grüneisen parameter in the earth's interior. Phys Earth Planet Inter 18:221–231

    Google Scholar 

  • Anderson OL, Schreiber E, Liebermann RC, Soga N (1968) Some elastic constant data on minerals relevant to Geophysics. Rev Geophys 6:491–524

    Google Scholar 

  • Andrews JTS, Norton PA, Westrum EF Jr (1978) An adiabatic calorimeter for use at superambient temperatures. The heat capacity of synthetic sapphire (α-Al2O3) from 300 to 550 K. J Chem Thermodyn 10:949–958

    Google Scholar 

  • Austin JB (1931) The thermal expansion of some refractory oxides. J Am Ceram Soc 14:795–810

    Google Scholar 

  • Babuska V, Fiala J, Kumazawa M, Ohno I, Sumino Y (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Inter 16:157–176

    Google Scholar 

  • Bailey DM, Calderwood FW, Greiner JD, Hunter O Jr, Smith JF, Schiltz RJ Jr (1975) Reproducibilities of some physical properties of MgF2. J Am Ceram Soc 58:489–492

    Google Scholar 

  • Bennett SJ (1978) The thermal expansion of copper between 300 and 700 K. J Phys D 11:777–780

    Google Scholar 

  • Benoit JR (1888) Nouvelles études et mesures de dilatations par la methode de M. Fizeau. Trav Mem Bur Int Poids Mes 6:193

    Google Scholar 

  • Blanchard R, Varshni YP (1967) Lattice dynamics of diamond. Phys Rev 159:599–602

    Google Scholar 

  • Chung DH, Simmons G (1968) Pressure and temperature dependences of the isotropic elastic moduli of polycrystalline alumina. J Appl Phys 39:5316–5326

    Google Scholar 

  • Collins JG, White GK (1964) Thermal expansion of solids. Progr Low Temp Phys 4:450–479

    Google Scholar 

  • Deshpande VT (1961) Thermal expansion of sodium fluoride and sodium bromide. Acta Crystallogr 14:794

    Google Scholar 

  • Dyson J (1970) Interferometry as a measuring tool. Aylesbury, Hunt Barnard Printing Ltd

  • Falzone AJ, Stacey FD (1981) Second order elasticity theory: an improved formulation of the Grüneisen parameter at high pressure. Phys Earth Planet Inter 24:284–290

    Google Scholar 

  • Gavrish AM, Zoz EI, Solov'eva AE (1976) X-ray dilatometry of natural and synthetic zircon. Inorg Mater 12:1232–1234

    Google Scholar 

  • Gorton AT, Bitsianes G, Joseph TL (1965) The thermal expansion coefficients for iron and its oxides from x-ray diffraction measurements at elevated temperatures. Trans Metall Soc AIME 233:1519–1525

    Google Scholar 

  • Grønvold F, Samuelsen EJ (1975) Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1050 K. antiferromagnetic transition. J Phys Chem Solids 36:249–256

    Google Scholar 

  • Hahn TA (1970) Thermal expansion of copper from 20 to 800 K-standard reference material 736. J Appl Phys 41:5096–5101

    Google Scholar 

  • Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:196–201

    Google Scholar 

  • Irvine RD, Stacey FD (1975) Pressure dependence of the thermal Grüneisen parameter with application to the earth's lower mantle and outer core. Phys Earth Planet Inter 11:157–165

    Google Scholar 

  • JANAF Thermochemical Tables: 2nd edn. Washington, U.S. Gov. Print. Office

  • Kôzu S, Ueda J (1929) Optical and thermal studies of topaz from Naegi, Japan. Sci Rep Tohoku Univ Ser 3, 3:161–170

    Google Scholar 

  • Kôzu S, Ueda J-I, Tsurumi S (1934) Thermal expansion of olivine. Proc Imp Acad (Tokyo) 10:83–86

    Google Scholar 

  • Krishnan RS (1946) Thermal expansion of diamond. Proc Indian Acad Sci Sect A 24:33–44

    Google Scholar 

  • Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74:5961–5972

    Google Scholar 

  • Liberman A, Gandall WB (1952) Design and construction of a self-calibrating dilatometer for high temperature use. J Am Ceram Soc 35:304–308

    Google Scholar 

  • Liebermann RC, Schreiber E (1968) Elastic constants of polycrystalline hematite as a function of pressure to 3 kilobars. J Geophys Res 73:6585–6590

    Google Scholar 

  • Lyon KG, Salinger GL, Swenson CA, White GK (1977) Linear thermal expansion measurements on silicon from 6 to 340 K. J Appl Phys 48:865–868

    Google Scholar 

  • McSkimin HJ, Andreach P Jr (1972) Elastic moduli of diamond as a function of pressure and temperature. J Appl Phys 43:2944–2948

    Google Scholar 

  • McSkimin HJ, Andreach P Jr, Glynn P (1972) The elastic stiffness moduli of diamond. J Appl Phys 43:985–987

    Google Scholar 

  • Norton MA, Berthold JW III, Jacobs SF, Plummer WA (1976) Precise measurement of the thermal expansion of silicon near 40° C. J Appl Phys 47:1683–1685

    Google Scholar 

  • Olinger B, Halleck PM (1976) The compression of α-quartz. J Geophys Res 81:5711–5714

    Google Scholar 

  • Ostrovsky IA (1979) The thermodynamics of substances at very high pressures and temperatures and some mineral reactions in the earth's mantle. Phys Chem Minerals 5:105–118

    Google Scholar 

  • Özkan H, Cartz L (1974) Anisotropic thermophysical properties of zircon. In: Taylor RE, Denman GL (eds) A.I.P. Conference Proceedings, Thermal expansion 1973, American Institute of Physics, New York, pp 21–33

    Google Scholar 

  • Özkan H, Jamieson JC (1978) Pressure dependence of the elastic constants of nonmetamict zircon. Phys Chem Minerals 2:215–224

    Google Scholar 

  • Pathak PD, Pandya NV, Ghadiali MP (1963) Thermal expansion of some alkali fluorides and magnesium oxide by x-ray diffraction. Indian J Phys 37:293–298

    Google Scholar 

  • Pathak PD, Trivedi JM, Vasavada NG (1973) Thermal expansion of NaF, KBr and RbBr and temperature variation of the frequency spectrum of NaF. Acta Crystallogr Sect A 29:477–479

    Google Scholar 

  • Rao KVK, Nagender SVN, Setty PLN (1962) Thermal expansion of magnesium fluoride. Acta Crystallogr 15:528–530

    Google Scholar 

  • Rapp JE, Merchant HD (1973) Thermal expansion of alkali halides from 70 to 570 K. J Appl Phys 44:3919–3923

    Google Scholar 

  • Rasmussen JJ, Kingery WD (1970) Effects of dopants on the defect structure of single-crystal aluminum oxide. J Am Ceram Soc 53:436–440

    Google Scholar 

  • Roberts RB (1978) Expansivity of silicon 20–500° C. In: Peggs ID (ed) Thermal expansion vol 6. Plenum, New York, pp 187–190

    Google Scholar 

  • Romanova MV, Smirnov IA, Tikhonov VV (1971) Thermal conductivity and specific heat of topaz. Sov Phys Solid State 13:1515–1516

    Google Scholar 

  • Sato Y, Akimoto S (1979) Hydrostatic compression of four corundum-type compounds: α-Al2O3, V2O3, Cr2O3 and Fe2O3. J Appl Phys 50:5285–5291

    Google Scholar 

  • Schauer A (1965) Thermal expansion, Grüneisen parameter, and temperature dependence of lattice vibration frequencies of aluminum oxide. Can J Phys 43:523–531

    Google Scholar 

  • Schreiber E, Anderson OL (1966) Pressure derivatives of the sound velocities of polycrystalline alumina. J Am Ceram Soc 49:184–190

    Google Scholar 

  • Sharma SS (1950) Thermal expansion of crystals: Part V. Haematite. Proc. Indian Acad Sci Sect A 32:285–291

    Google Scholar 

  • Sherstyukov NG, Lifanov II (1975) Thermal expansion of quartz single crystals. Sov Phys Crystallogr 19:681–682

    Google Scholar 

  • Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: A handbook. MIT Press Cambridge, Mass

    Google Scholar 

  • Singh HP, Simmons G (1976) X-ray determination of thermal expansion of olivine. Acta Crystallogr Sect A 32:771–773

    Google Scholar 

  • Sirdeshmukh DB, Deshpande VT (1964) Temperature variation of the lattice constants and the coefficients of thermal expansion of some fluorite type crystals. Indian J Pure Appl Phys 2:405–407

    Google Scholar 

  • Sirdeshmukh DB, Subhadra KG (1975) Note on the elastic properties of zircon. J Appl Phys 46:3681–3682

    Google Scholar 

  • Skinner BJ (1956) Physical properties of end-members of the garnet group. Am Mineral 41:428–436

    Google Scholar 

  • Skinner BJ (1957) The thermal expansions of thoria, periclase and diamond. Am Mineral 42:39–55

    Google Scholar 

  • Soga N (1967) Elastic constants of garnet under pressure and temperature. J Geophys Res 72:4227–4234

    Google Scholar 

  • Soga N, Anderson OL (1967) High-temperature elasticity and expansivity of forsterite and steatite. J Am Ceram Soc 50:239–242

    Google Scholar 

  • Stacey FD (1977a) Applications of thermodynamics to fundamental earth physics. Geophys Surveys 3:175–204

    Google Scholar 

  • Stacey FD (1977b) A thermal model of the earth. Phys Earth Planet Inter 15:341–348

    Google Scholar 

  • Stacey FD, Rynn JMW, Little EC, Croskell C (1969) Displacement and tilt transducers of 140 Db range. J Phys E 2:945–949

    Google Scholar 

  • Strelkov PG, Lifanov II, Sherstyukov NG (1966a) The problem of uniform dilatometric measurements in the USSR in the temperature range of 0–900° C. Meas Tech 15:721–724

    Google Scholar 

  • Strelkov PG, Lifanov II, Sherstyukov NG (1966b) The problem of uniform dilatometric measurements in the USSR in the temperature range of 0–900° C. 2. Average strain curves of monocrystalline quartz in the range of 0–575° C. Meas Tech 15:868–871

    Google Scholar 

  • Subbarao EC, Gokhale KVGK (1968) Thermal expansion of zircon. Jpn J Appl Phys 7:1126

    Google Scholar 

  • Sumino Y, Ohno I, Goto T, Kumazawa M (1976) Measurement of elastic constants and internal frictions of single-crystal MgO by rectangular parallelepiped resonance. J Phys Earth 24:263–273

    Google Scholar 

  • Suzuki I (1975) Thermal expansion of periclase and olivine, and their anharmonic properties. J Phys Earth 23:145–159

    Google Scholar 

  • Touloukian YS, Buyco EH (1970) Specific heat, nonmetallic solids. Plenum, New York

    Google Scholar 

  • Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion, metallic elements and alloys. Plenum, New York

    Google Scholar 

  • Touloukian YS, Kirby RK, Taylor RE, Lee TYR (1977) Thermal expansion, nonmetallic solids. Plenum, New York

    Google Scholar 

  • White GK, Anderson OL (1966) Grüneisen parameter of magnesium oxide. J Appl Phys 37:430–432

    Google Scholar 

  • Yates B, Cooper RF, Pojur AF (1972) Thermal expansion at elevated temperatures. II. Aluminium oxide, experimental data between 100 and 800° K and their analysis. J Phys C 5:1046–1058

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falzone, A.J., Stacey, F.D. Measurements of thermal expansions of small mineral crystals. Phys Chem Minerals 8, 212–217 (1982). https://doi.org/10.1007/BF00309480

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309480

Keywords

Navigation