Skip to main content
Log in

Electron microscopy of clinoenstatite from a boninite and a chondrite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Clinoenstatite crystals from a boninite and the Yamato-74191 chondrite have been studied with an analytical electron microscope. (100) twins and cracks perpendicular and parallel to the c axis are characteristic of their submicroscopic textures. The frequency in appearance along the c axis and widths of the cracks have been explained by the dimensional change of the c axis in the direct transformation of protoenstatite to clinoenstatite and by the cooling rate around the transformation temperature. The cracks in the crystals from the boninite are filled with fibrous crystals of talc, while those from the chondrite are open or filled with glass in which fine crystals of plagioclase are common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borg I, Handin J (1966) Experimental deformation of crystalline rocks. Tectonophysios 3:249–368

    Google Scholar 

  • Boyd FR, England JL (1965) The rhombic enstatite-clinoenstatite inversion. Carnegie Inst Washington Ann Rept Dir Geophys Lab 1964–1965:117–120

  • Brown WL, Smith JV (1963) High-temperature X-ray studies on the polymorphism of MgSiO3. Z Kristallogr 118:186–212

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1979) Boninite, komatiites and ophiolitic basalts. Nature 280:550–553

    Google Scholar 

  • Dallwitz WB, Green DH, Thompson JE (1966) Clinoenstatite in a volcanic rock from the Cape Vogel area, Papua. J Petrol 7:375–403

    Google Scholar 

  • Dietrich V, Emmermann R, Oberhänsli R, Puchelt H (1978) Geochemistry of basaltic and gabbroic rocks from the west Mariana trench. Earth Planet Sci Lett 39:127–144

    Google Scholar 

  • Grover JE (1972) The stability of low-clinoenstatite in the system Mg2Si2O6-CaMgSi2O6. (abstr.) Trans Amer Geophys Union 53:539

    Google Scholar 

  • Ikeda Y, Takeda H (1979) Petrology of the Yamato-74191 chondrite. Mem Natl Inst Polar Res Spec Issue 12:38–58

    Google Scholar 

  • Kimura M, Yagi K (1980) Crystallization of chondrules in ordinary chondrites. Geochim Cosmochim Acta 44:589–602

    Google Scholar 

  • Kitamura M, Yasuda M, Watanabe S, Morimoto N (1983) Cooling history of pyroxene chondrules in the Yamato-74191 chondrite (L3) — analytical electron microscopic study —. Earth Planet Sci Lett (in press)

  • Komatsu M (1980) Clinoenstatite in volcanic rocks from the Bonin Islands. Contrib Mineral Petrol 74:329–338

    Google Scholar 

  • Kuroda N, Shiraki K (1975) Boninite and related rocks of Chichijima, Bonin Islands, Japan. Rept Fac Sci Shizuoka Univ 10:145–155

    Google Scholar 

  • Lacroix A (1906) Le meteorite de Sainte-Christophe-la Cartreuse. Bull Soc Sc Nat Ouest France Nantes [2] 6:81–112

    Google Scholar 

  • Morimoto N, Kitamura M (1981) Application of 200 kV analytical electron microscopy to the study of fine textures of minerals. Bull Minéral 104:241–245

    Google Scholar 

  • Munoz JL (1968) Effect of shearing on enstatite polymorphism. Carnegie Inst Washington Ann Rept Dir Geophys Lab 1966–67:369–370

  • Murakami T, Takeuchi Y, Yamanaka T (1983) X-ray studies on protoenstatite: I. Ortho-to-proto transition and the structure at 1,080° C. Z Kristallogr (in press)

  • Ojima M (1982) Growth of orthoenstatite crystals by the flux method. J Japan Assoc Min Petr Econ Geol Spec Paper 3:97–103

    Google Scholar 

  • Raleigh CB, Kirby SH, Carter NL, Ave Lallemant HG (1971) Slip and the clinoenstatite transformation as competing rate process in enstatite. J Geophys Res 76:4011–4022

    Google Scholar 

  • Riecker RE, Rooney TP (1967) Deformation and polymorphism of enstatite under shear stress. Bull Geol Soc Amer 78:1045–1053

    Google Scholar 

  • Sclar CB, Carrison LC, Schwartz CM (1964) High-pressure stability field of clinoenstatite and the orthoenstatite-clinoenstatite transition. (abstr.) Trans Am Geophys Union 45:121

    Google Scholar 

  • Shiraki K, Kuroda N, Urano H, Maruyama S (1980) Clinoenstatite in boninites from the Bonin Islands, Japan. Nature 285:31–32

    Google Scholar 

  • Smith JV (1969) Crystal structure and stability of the MgSiO3 polymorphs; physical properties and phase relations of Mg, Fe pyroxenes. Min Soc Amer Spec Paper 2:3–29

    Google Scholar 

  • Smyth JR (1974) Experimental study on the polymorphism of enstatite. Am Mineral 59:345–352

    Google Scholar 

  • Turner FJ, Heard HC, Griggs DT (1960) Experimental deformation of enstatite and accompanying inversion to clinoenstatite. Rept 21st Int Geol Congr Copenhagen 18:399–408

    Google Scholar 

  • Van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31:747–765

    Google Scholar 

  • Wahl W (1907) I. Die Enstatitaugite. Eine Untersuchung über monoclinic pyroxene mit kleinem Winkel der optischen Achsen und niedrigem Kalkgehalt. Tschermaks Min Petr Mitt 26:1–131

    Google Scholar 

  • Yanai K, Miyamoto M, Takeda H (1978) A classification for the Yamato-74 chondrites based on the chemical compositions of their olivines and pyroxenes. Mem Natl Inst Polar Res Spec Issue 8:110–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, M., Kitamura, M. & Morimoto, N. Electron microscopy of clinoenstatite from a boninite and a chondrite. Phys Chem Minerals 9, 192–196 (1983). https://doi.org/10.1007/BF00311954

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311954

Keywords

Navigation